{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Build and install the package\n", "\n", "First patch `pyo3-polars`:\n", "\n", "\n", "- Use [this diff](https://github.com/pola-rs/pyo3-polars/compare/main...Magnus167:pyo3-polars:main) to make changes to the `pyo3-polars` package.\n", "\n", "\n", "Install the package:\n", "\n", "```bash\n", "python -m venv .venv\n", "\n", "# source .venv/bin/activate\n", "./.venv/Scripts/activate\n", "\n", "pip install maturin ipywidgets\n", "\n", "maturin develop --release\n", "```\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Import Python packages\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import macrosynergy\n", "import pandas as pd\n", "import numpy as np\n", "import polars as pl\n", "import os" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Import Python bindings - `msyrs`\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import msyrs" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "DATA_FOLDER_PATH = \"E:/Work/jpmaqs-data\"\n", "# DATA_FOLDER_PATH = \"C:/Users/PalashTyagi/Code/go-dataquery/jpmaqs-data\"\n", "DQ_CLIENT_ID = os.getenv(\"DQ_CLIENT_ID\")\n", "DQ_CLIENT_SECRET = os.getenv(\"DQ_CLIENT_SECRET\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "dfpath = f\"{DATA_FOLDER_PATH}/data/ADPEMPL_SA_P1M1ML1/USD_ADPEMPL_SA_P1M1ML1.csv\"\n", "\n", "\n", "ldf: pl.DataFrame = msyrs.qdf.load_qdf(dfpath)\n", "ldf.head(5)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "cids_dm = \"AUD.CAD.CHF.EUR.GBP.JPY.NOK.NZD.SEK.USD\".split(\".\")\n", "cids_em = \"CLP.COP.CZK.HUF.IDR.ILS.INR.KRW.MXN.PLN.THB.TRY.TWD.ZAR\".split(\".\")\n", "cids = cids_dm + cids_em\n", "cids_dux = list(set(cids) - set([\"IDR\", \"NZD\"]))\n", "ecos = \"CPIC_SA_P1M1ML12.CPIC_SJA_P3M3ML3AR.CPIC_SJA_P6M6ML6AR.CPIH_SA_P1M1ML12.CPIH_SJA_P3M3ML3AR.CPIH_SJA_P6M6ML6AR.INFTEFF_NSA.INTRGDP_NSA_P1M1ML12_3MMA.INTRGDPv5Y_NSA_P1M1ML12_3MMA.PCREDITGDP_SJA_D1M1ML12.RGDP_SA_P1Q1QL4_20QMA.RYLDIRS02Y_NSA.RYLDIRS05Y_NSA.PCREDITBN_SJA_P1M1ML12\".split(\n", " \".\"\n", ")\n", "\n", "\n", "mkts = \"DU02YXR_NSA.DU05YXR_NSA.DU02YXR_VT10.DU05YXR_VT10.EQXR_NSA.EQXR_VT10.FXXR_NSA.FXXR_VT10.FXCRR_NSA.FXTARGETED_NSA.FXUNTRADABLE_NSA\".split(\n", " \".\"\n", ")\n", "xcats = ecos + mkts\n", "\n", "tickers = [f\"{c}_{x}\" for c in cids for x in xcats]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "downloaded_df: pl.DataFrame = msyrs.download.download_jpmaqs_indicators_as_df(\n", " client_id=DQ_CLIENT_ID,\n", " client_secret=DQ_CLIENT_SECRET,\n", " tickers=tickers,\n", ")\n", "downloaded_df.head(5)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "big_df: pl.DataFrame = msyrs.qdf.load_qdf_from_download_bank(\n", " folder_path=DATA_FOLDER_PATH, tickers=tickers\n", ")\n", "big_df.head(5)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "big_df.estimated_size(\"mb\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "big_df.to_pandas().memory_usage(deep=True).sum() / 1024**2" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "macrosynergy.management.types.QuantamentalDataFrame(big_df.to_pandas()).memory_usage(\n", " deep=True\n", ").sum() / 1024**2" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sel_cids = [\"USD\", \"EUR\", \"GBP\", \"AUD\", \"CAD\"]\n", "start = \"2024-11-14\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "eq_df = msyrs.qdf.reduce_dataframe(\n", " df=big_df,\n", " cids=sel_cids,\n", " xcats=[\"EQXR_NSA\", \"EQXR_VT10\"],\n", " start=start,\n", ")\n", "eq_df" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fx_xcats = [xc for xc in xcats if xc.startswith(\"FX\")]\n", "fx_df = msyrs.qdf.reduce_dataframe(\n", " df=big_df, cids=sel_cids, start=start, xcats=fx_xcats, intersect=True\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "new_df: pl.DataFrame = msyrs.qdf.update_dataframe(df=eq_df, df_add=fx_df)\n", "\n", "new_df.head(10)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "new_df.tail(10)" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.7" } }, "nbformat": 4, "nbformat_minor": 2 }