mirror of
https://github.com/Magnus167/msyrs.git
synced 2025-11-19 20:06:10 +00:00
Compare commits
6 Commits
rawdf
...
5c3862c297
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
5c3862c297 | ||
|
|
3559a90ad2 | ||
|
|
b7368a366e | ||
|
|
24a4176e17 | ||
|
|
165e1c19e4 | ||
|
|
fefe849394 |
File diff suppressed because one or more lines are too long
@@ -68,7 +68,7 @@ pub fn get_period_indices_hv(dfw: PyDataFrame, est_freq: &str) -> PyResult<Vec<u
|
||||
cids,
|
||||
weights = None,
|
||||
signs = None,
|
||||
weight_xcats = None,
|
||||
weight_xcat = None,
|
||||
normalize_weights = false,
|
||||
start = None,
|
||||
end = None,
|
||||
@@ -84,7 +84,7 @@ pub fn linear_composite(
|
||||
cids: Vec<String>,
|
||||
weights: Option<Vec<f64>>,
|
||||
signs: Option<Vec<f64>>,
|
||||
weight_xcats: Option<Vec<String>>,
|
||||
weight_xcat: Option<String>,
|
||||
normalize_weights: bool,
|
||||
start: Option<String>,
|
||||
end: Option<String>,
|
||||
@@ -101,7 +101,7 @@ pub fn linear_composite(
|
||||
cids,
|
||||
weights,
|
||||
signs,
|
||||
weight_xcats,
|
||||
weight_xcat,
|
||||
normalize_weights,
|
||||
start,
|
||||
end,
|
||||
|
||||
@@ -1,281 +0,0 @@
|
||||
//! # DateSeries and BDateSeries Implementations
|
||||
//!
|
||||
//! This module provides two date-handling types using the [`chrono`](https://docs.rs/chrono) crate:
|
||||
//!
|
||||
//! - [`DateSeries`]: Stores any set of calendar dates and allows adding/subtracting *calendar days*.
|
||||
//! - [`BDateSeries`]: Stores only Monday–Friday business days and interprets add/sub as *business day* shifts,
|
||||
//! skipping weekends (e.g., adding 1 to Friday goes to Monday).
|
||||
//!
|
||||
//! Both types also provide a [`from_iso8601_range`](#method.from_iso8601_range) constructor
|
||||
//! that builds a date series (or business‑date series) from a start/end string (YYYY‑MM‑DD).
|
||||
|
||||
use chrono::{Datelike, Duration, NaiveDate, ParseResult};
|
||||
use std::ops::{Add, Sub};
|
||||
|
||||
/// Determines if the date is Saturday or Sunday.
|
||||
fn is_weekend(date: NaiveDate) -> bool {
|
||||
matches!(date.weekday(), chrono::Weekday::Sat | chrono::Weekday::Sun)
|
||||
}
|
||||
|
||||
/// A `DateSeries` stores a list of [`NaiveDate`] values and shifts by **calendar days**.
|
||||
///
|
||||
/// ## Example Usage
|
||||
///
|
||||
/// ```
|
||||
/// use chrono::NaiveDate;
|
||||
/// use msyrs::core::dateseries::DateSeries;
|
||||
///
|
||||
/// // Create from explicit dates
|
||||
/// let ds = DateSeries::new(vec![
|
||||
/// NaiveDate::from_ymd_opt(2023, 7, 14).unwrap(), // a Friday
|
||||
/// NaiveDate::from_ymd_opt(2023, 7, 15).unwrap(), // a Saturday
|
||||
/// ]);
|
||||
///
|
||||
/// // Shift forward by 5 calendar days
|
||||
/// let ds_plus = ds + 5;
|
||||
/// // 2023-07-14 + 5 => 2023-07-19 (Wednesday)
|
||||
/// // 2023-07-15 + 5 => 2023-07-20 (Thursday)
|
||||
///
|
||||
/// assert_eq!(ds_plus.data()[0], NaiveDate::from_ymd_opt(2023, 7, 19).unwrap());
|
||||
/// assert_eq!(ds_plus.data()[1], NaiveDate::from_ymd_opt(2023, 7, 20).unwrap());
|
||||
/// ```
|
||||
///
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct DateSeries {
|
||||
data: Vec<NaiveDate>,
|
||||
}
|
||||
|
||||
impl DateSeries {
|
||||
/// Creates a new `DateSeries` from a vector of [`NaiveDate`] values.
|
||||
///
|
||||
/// # Panics
|
||||
/// - Does not panic on invalid weekend or anything; this type accepts all valid dates.
|
||||
pub fn new(data: Vec<NaiveDate>) -> Self {
|
||||
Self { data }
|
||||
}
|
||||
|
||||
/// Constructs a `DateSeries` by parsing an ISO‑8601 start/end string (YYYY‑MM‑DD)
|
||||
/// and including **every calendar date** from start to end (inclusive).
|
||||
///
|
||||
/// # Errors
|
||||
/// - Returns a [`chrono::ParseError`](chrono::ParseError) if parsing fails.
|
||||
/// - Panics if `start` > `end` chronologically.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use msyrs::core::dateseries::DateSeries;
|
||||
/// # fn main() -> Result<(), chrono::ParseError> {
|
||||
/// let ds = DateSeries::from_iso8601_range("2023-07-14", "2023-07-16")?;
|
||||
/// assert_eq!(ds.data().len(), 3);
|
||||
/// # Ok(())
|
||||
/// # }
|
||||
/// ```
|
||||
pub fn from_iso8601_range(start: &str, end: &str) -> ParseResult<Self> {
|
||||
let start_date = NaiveDate::parse_from_str(start, "%Y-%m-%d")?;
|
||||
let end_date = NaiveDate::parse_from_str(end, "%Y-%m-%d")?;
|
||||
assert!(
|
||||
start_date <= end_date,
|
||||
"start date cannot be after end date"
|
||||
);
|
||||
|
||||
let mut dates = Vec::new();
|
||||
let mut current = start_date;
|
||||
while current <= end_date {
|
||||
dates.push(current);
|
||||
current = current
|
||||
.checked_add_signed(Duration::days(1))
|
||||
.expect("Date overflow in from_iso8601_range");
|
||||
}
|
||||
Ok(Self::new(dates))
|
||||
}
|
||||
|
||||
/// Returns a reference to the underlying slice of dates.
|
||||
pub fn data(&self) -> &[NaiveDate] {
|
||||
&self.data
|
||||
}
|
||||
|
||||
/// Internal helper applying a function to each date.
|
||||
fn apply<F>(&self, op: F) -> Self
|
||||
where
|
||||
F: Fn(NaiveDate) -> NaiveDate,
|
||||
{
|
||||
let new_data = self.data.iter().map(|&date| op(date)).collect();
|
||||
Self { data: new_data }
|
||||
}
|
||||
}
|
||||
|
||||
/// Implements adding calendar days to each `NaiveDate`.
|
||||
///
|
||||
/// If the shifted date goes out of chrono's valid range, it panics.
|
||||
impl Add<i64> for DateSeries {
|
||||
type Output = Self;
|
||||
|
||||
fn add(self, rhs: i64) -> Self::Output {
|
||||
self.apply(|date| {
|
||||
date.checked_add_signed(Duration::days(rhs))
|
||||
.expect("Overflow in date addition")
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// Implements subtracting calendar days from each `NaiveDate`.
|
||||
///
|
||||
/// If the shifted date goes out of chrono's valid range, it panics.
|
||||
impl Sub<i64> for DateSeries {
|
||||
type Output = Self;
|
||||
|
||||
fn sub(self, rhs: i64) -> Self::Output {
|
||||
self.apply(|date| {
|
||||
date.checked_sub_signed(Duration::days(rhs))
|
||||
.expect("Overflow in date subtraction")
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// A “Business Date Series” for Monday–Friday only.
|
||||
///
|
||||
/// 1. The constructor disallows weekend dates (panics if any date is Sat/Sun).
|
||||
/// 2. Adding or subtracting an `i64` interprets that integer as *business days*, skipping weekends.
|
||||
/// For example, adding 1 to a Friday yields the following Monday.
|
||||
///
|
||||
/// ## Example Usage
|
||||
///
|
||||
/// ```
|
||||
/// use chrono::NaiveDate;
|
||||
/// use msyrs::core::dateseries::BDateSeries;
|
||||
///
|
||||
/// // Friday
|
||||
/// let friday = NaiveDate::from_ymd_opt(2023, 7, 14).unwrap();
|
||||
/// let mut bds = BDateSeries::new(vec![friday]);
|
||||
///
|
||||
/// // Adding 1 “business day” => next Monday, 2023-07-17
|
||||
/// bds = bds + 1;
|
||||
/// assert_eq!(bds.data()[0], NaiveDate::from_ymd_opt(2023, 7, 17).unwrap());
|
||||
/// ```
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct BDateSeries {
|
||||
data: Vec<NaiveDate>,
|
||||
}
|
||||
|
||||
impl BDateSeries {
|
||||
/// Creates a new `BDateSeries`, panicking if any of the supplied dates is on Saturday/Sunday.
|
||||
pub fn new(data: Vec<NaiveDate>) -> Self {
|
||||
for &d in &data {
|
||||
if is_weekend(d) {
|
||||
panic!("BDateSeries cannot contain weekend dates: {}", d);
|
||||
}
|
||||
}
|
||||
Self { data }
|
||||
}
|
||||
|
||||
/// Constructs a `BDateSeries` by parsing an ISO‑8601 start/end string (YYYY‑MM‑DD).
|
||||
///
|
||||
/// Only Monday–Friday dates within `[start, end]` are included in the series.
|
||||
///
|
||||
/// # Errors
|
||||
/// - Returns a [`chrono::ParseError`](chrono::ParseError) if parsing fails.
|
||||
/// - Panics if `start` > `end` chronologically.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// use msyrs::core::dateseries::BDateSeries;
|
||||
/// # fn main() -> Result<(), chrono::ParseError> {
|
||||
/// let bds = BDateSeries::from_iso8601_range("2023-07-14", "2023-07-18")?;
|
||||
/// // 2023-07-14 (Friday), 2023-07-15 (Saturday) => skipped,
|
||||
/// // 2023-07-16 (Sunday) => skipped,
|
||||
/// // 2023-07-17 (Monday), 2023-07-18 (Tuesday)
|
||||
/// // so total 3 valid business days
|
||||
/// assert_eq!(bds.data().len(), 3);
|
||||
/// # Ok(())
|
||||
/// # }
|
||||
/// ```
|
||||
pub fn from_iso8601_range(start: &str, end: &str) -> ParseResult<Self> {
|
||||
let start_date = NaiveDate::parse_from_str(start, "%Y-%m-%d")?;
|
||||
let end_date = NaiveDate::parse_from_str(end, "%Y-%m-%d")?;
|
||||
assert!(
|
||||
start_date <= end_date,
|
||||
"start date cannot be after end date"
|
||||
);
|
||||
|
||||
let mut dates = Vec::new();
|
||||
let mut current = start_date;
|
||||
while current <= end_date {
|
||||
if !is_weekend(current) {
|
||||
dates.push(current);
|
||||
}
|
||||
current = current
|
||||
.checked_add_signed(Duration::days(1))
|
||||
.expect("Date overflow in from_iso8601_range");
|
||||
}
|
||||
Ok(Self::new(dates))
|
||||
}
|
||||
|
||||
/// Returns a reference to the underlying slice of dates.
|
||||
pub fn data(&self) -> &[NaiveDate] {
|
||||
&self.data
|
||||
}
|
||||
|
||||
/// Internal helper that tries to shift a date forward or backward by one day at a time,
|
||||
/// skipping weekends, for a total of `delta` business days.
|
||||
fn shift_business_days(date: NaiveDate, delta: i64) -> NaiveDate {
|
||||
if delta == 0 {
|
||||
return date;
|
||||
}
|
||||
|
||||
let step = if delta > 0 { 1 } else { -1 };
|
||||
let abs_delta = delta.abs();
|
||||
|
||||
let mut new_date = date;
|
||||
for _ in 0..abs_delta {
|
||||
// Move by 1 day in the correct direction
|
||||
new_date = new_date
|
||||
.checked_add_signed(Duration::days(step))
|
||||
.expect("Overflow in BDateSeries add/sub");
|
||||
// If we land on weekend, keep moving until Monday..Friday
|
||||
while is_weekend(new_date) {
|
||||
new_date = new_date
|
||||
.checked_add_signed(Duration::days(step))
|
||||
.expect("Overflow in BDateSeries skipping weekend");
|
||||
}
|
||||
}
|
||||
new_date
|
||||
}
|
||||
|
||||
/// Internal helper to apply a shift of `delta` business days to each date.
|
||||
fn apply(&self, delta: i64) -> Self {
|
||||
let new_data = self
|
||||
.data
|
||||
.iter()
|
||||
.map(|&date| Self::shift_business_days(date, delta))
|
||||
.collect();
|
||||
Self { data: new_data }
|
||||
}
|
||||
}
|
||||
|
||||
/// Implement *business day* addition for `BDateSeries`.
|
||||
///
|
||||
/// # Panics
|
||||
/// - If the resulting date(s) overflow `NaiveDate` range.
|
||||
/// - `BDateSeries` is guaranteed to remain Monday..Friday after the shift.
|
||||
impl Add<i64> for BDateSeries {
|
||||
type Output = Self;
|
||||
|
||||
fn add(self, rhs: i64) -> Self::Output {
|
||||
self.apply(rhs)
|
||||
}
|
||||
}
|
||||
|
||||
/// Implement *business day* subtraction for `BDateSeries`.
|
||||
///
|
||||
/// # Panics
|
||||
/// - If the resulting date(s) overflow `NaiveDate`.
|
||||
/// - `BDateSeries` is guaranteed to remain Monday..Friday after the shift.
|
||||
impl Sub<i64> for BDateSeries {
|
||||
type Output = Self;
|
||||
|
||||
fn sub(self, rhs: i64) -> Self::Output {
|
||||
self.apply(-rhs)
|
||||
}
|
||||
}
|
||||
@@ -1,3 +0,0 @@
|
||||
pub mod df;
|
||||
pub mod xseries;
|
||||
pub mod dateseries;
|
||||
@@ -1,223 +0,0 @@
|
||||
use std::ops::{Add, Div, Mul, Sub};
|
||||
|
||||
//
|
||||
// 1) Define a float series: FSeries
|
||||
//
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct FSeries {
|
||||
data: Vec<f64>,
|
||||
}
|
||||
|
||||
impl FSeries {
|
||||
/// Create a new FSeries from a vector of f64 values.
|
||||
pub fn new(data: Vec<f64>) -> Self {
|
||||
Self { data }
|
||||
}
|
||||
|
||||
pub fn len(&self) -> usize {
|
||||
self.data.len()
|
||||
}
|
||||
|
||||
/// Element‑wise helper applying an operation between two FSeries.
|
||||
pub fn apply<F>(&self, other: &Self, op: F) -> Self
|
||||
where
|
||||
F: Fn(f64, f64) -> f64,
|
||||
{
|
||||
assert!(
|
||||
self.len() == other.len(),
|
||||
"FSeries must have the same length to apply operations."
|
||||
);
|
||||
let data = self
|
||||
.data
|
||||
.iter()
|
||||
.zip(other.data.iter())
|
||||
.map(|(&a, &b)| op(a, b))
|
||||
.collect();
|
||||
FSeries { data }
|
||||
}
|
||||
|
||||
/// Access to the underlying data
|
||||
pub fn data(&self) -> &[f64] {
|
||||
&self.data
|
||||
}
|
||||
}
|
||||
|
||||
// Macros for float series arithmetic (element‑wise)
|
||||
macro_rules! impl_fseries_bin_op {
|
||||
($trait:ident, $method:ident, $op:tt) => {
|
||||
impl $trait for FSeries {
|
||||
type Output = Self;
|
||||
|
||||
fn $method(self, rhs: Self) -> Self::Output {
|
||||
self.apply(&rhs, |a, b| a $op b)
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl_fseries_bin_op!(Add, add, +);
|
||||
impl_fseries_bin_op!(Sub, sub, -);
|
||||
impl_fseries_bin_op!(Mul, mul, *);
|
||||
impl_fseries_bin_op!(Div, div, /);
|
||||
|
||||
macro_rules! impl_fseries_scalar_op {
|
||||
($trait:ident, $method:ident, $op:tt) => {
|
||||
impl $trait<f64> for FSeries {
|
||||
type Output = Self;
|
||||
|
||||
fn $method(mut self, scalar: f64) -> Self::Output {
|
||||
for x in self.data.iter_mut() {
|
||||
*x = *x $op scalar;
|
||||
}
|
||||
self
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl_fseries_scalar_op!(Add, add, +);
|
||||
impl_fseries_scalar_op!(Sub, sub, -);
|
||||
impl_fseries_scalar_op!(Mul, mul, *);
|
||||
impl_fseries_scalar_op!(Div, div, /);
|
||||
|
||||
//
|
||||
// 2) Define an integer series: ISeries
|
||||
//
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct ISeries {
|
||||
data: Vec<i64>,
|
||||
}
|
||||
|
||||
impl ISeries {
|
||||
/// Create an ISeries from a vector of i64 values.
|
||||
pub fn new(data: Vec<i64>) -> Self {
|
||||
Self { data }
|
||||
}
|
||||
|
||||
pub fn len(&self) -> usize {
|
||||
self.data.len()
|
||||
}
|
||||
|
||||
pub fn data(&self) -> &[i64] {
|
||||
&self.data
|
||||
}
|
||||
|
||||
/// Element‑wise helper for integer series.
|
||||
pub fn apply<F>(&self, other: &Self, op: F) -> Self
|
||||
where
|
||||
F: Fn(i64, i64) -> i64,
|
||||
{
|
||||
assert!(
|
||||
self.len() == other.len(),
|
||||
"ISeries must have the same length to apply operations."
|
||||
);
|
||||
let data = self
|
||||
.data
|
||||
.iter()
|
||||
.zip(other.data.iter())
|
||||
.map(|(&a, &b)| op(a, b))
|
||||
.collect();
|
||||
ISeries { data }
|
||||
}
|
||||
}
|
||||
|
||||
// Macros for integer series arithmetic (element‑wise)
|
||||
macro_rules! impl_iseries_bin_op {
|
||||
($trait:ident, $method:ident, $op:tt) => {
|
||||
impl $trait for ISeries {
|
||||
type Output = Self;
|
||||
|
||||
fn $method(self, rhs: Self) -> Self::Output {
|
||||
self.apply(&rhs, |a, b| a $op b)
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl_iseries_bin_op!(Add, add, +);
|
||||
impl_iseries_bin_op!(Sub, sub, -);
|
||||
impl_iseries_bin_op!(Mul, mul, *);
|
||||
impl_iseries_bin_op!(Div, div, /); // integer division (floor trunc)
|
||||
|
||||
// Optional scalar operations (for i64)
|
||||
macro_rules! impl_iseries_scalar_op {
|
||||
($trait:ident, $method:ident, $op:tt) => {
|
||||
impl $trait<i64> for ISeries {
|
||||
type Output = Self;
|
||||
|
||||
fn $method(mut self, scalar: i64) -> Self::Output {
|
||||
for x in self.data.iter_mut() {
|
||||
*x = *x $op scalar;
|
||||
}
|
||||
self
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl_iseries_scalar_op!(Add, add, +);
|
||||
impl_iseries_scalar_op!(Sub, sub, -);
|
||||
impl_iseries_scalar_op!(Mul, mul, *);
|
||||
impl_iseries_scalar_op!(Div, div, /); // floor/trunc division by scalar
|
||||
|
||||
/// A boolean series: BSeries
|
||||
///
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct BSeries {
|
||||
data: Vec<bool>,
|
||||
}
|
||||
|
||||
impl BSeries {
|
||||
pub fn new(data: Vec<bool>) -> Self {
|
||||
Self { data }
|
||||
}
|
||||
|
||||
pub fn len(&self) -> usize {
|
||||
self.data.len()
|
||||
}
|
||||
|
||||
pub fn data(&self) -> &[bool] {
|
||||
&self.data
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert an FSeries to ISeries by truncation (floor cast).
|
||||
impl From<FSeries> for ISeries {
|
||||
fn from(fseries: FSeries) -> Self {
|
||||
let data = fseries
|
||||
.data
|
||||
.into_iter()
|
||||
.map(|val| val as i64) // trunc cast
|
||||
.collect();
|
||||
ISeries::new(data)
|
||||
}
|
||||
}
|
||||
|
||||
/// Implement conversion from ISeries to FSeries by casting to f64.
|
||||
impl From<ISeries> for FSeries {
|
||||
fn from(iseries: ISeries) -> Self {
|
||||
let data = iseries.data.into_iter().map(|val| val as f64).collect();
|
||||
FSeries::new(data)
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert an ISeries to BSeries by checking if each value is non-zero.
|
||||
impl From<ISeries> for BSeries {
|
||||
fn from(iseries: ISeries) -> Self {
|
||||
let data = iseries.data.into_iter().map(|val| val != 0).collect();
|
||||
BSeries::new(data)
|
||||
}
|
||||
}
|
||||
|
||||
impl From<BSeries> for ISeries {
|
||||
fn from(bseries: BSeries) -> Self {
|
||||
let data = bseries
|
||||
.data
|
||||
.into_iter()
|
||||
.map(|val| if val { 1 } else { 0 })
|
||||
.collect();
|
||||
ISeries::new(data)
|
||||
}
|
||||
}
|
||||
@@ -102,7 +102,7 @@ impl Default for JPMaQSDownloadGetIndicatorArgs {
|
||||
/// Struct for downloading data from the JPMaQS data from JPMorgan DataQuery API.
|
||||
///
|
||||
/// ## Example Usage
|
||||
/// ```ignore
|
||||
/// ```rust
|
||||
/// use msyrs::download::jpmaqsdownload::JPMaQSDownload;
|
||||
/// use msyrs::download::jpmaqsdownload::JPMaQSDownloadGetIndicatorArgs;
|
||||
/// use polars::prelude::*;
|
||||
@@ -140,7 +140,7 @@ impl Default for JPMaQSDownloadGetIndicatorArgs {
|
||||
/// Ok(_) => println!("Saved indicators to disk"),
|
||||
/// Err(e) => println!("Error saving indicators: {:?}", e),
|
||||
/// }
|
||||
/// ```
|
||||
///
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct JPMaQSDownload {
|
||||
requester: DQRequester,
|
||||
@@ -277,7 +277,7 @@ impl JPMaQSDownload {
|
||||
///
|
||||
/// Usage:
|
||||
///
|
||||
/// ```ignore
|
||||
/// ```rust
|
||||
/// use msyrs::download::jpmaqsdownload::JPMaQSDownload;
|
||||
/// use msyrs::download::jpmaqsdownload::JPMaQSDownloadGetIndicatorArgs;
|
||||
/// let mut jpamqs_download = JPMaQSDownload::default();
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
// #![doc = include_str!("../README.md")]
|
||||
// uncomment the above line to include the README.md file in the documentation
|
||||
|
||||
//! # msyrs
|
||||
//!
|
||||
@@ -19,9 +18,6 @@
|
||||
/// Documentation and type-stubs for the `msyrs` Python API.
|
||||
pub mod _py;
|
||||
|
||||
/// Implementation for the `core` module.
|
||||
pub mod core;
|
||||
|
||||
/// Implementation for the `download` module.
|
||||
pub mod download;
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
use crate::utils::dateutils::{get_bdates_from_col, get_min_max_real_dates};
|
||||
use crate::utils::qdf::pivots::*;
|
||||
use crate::utils::qdf::reduce_df::*;
|
||||
use crate::utils::qdf::reduce_dataframe;
|
||||
use chrono::NaiveDate;
|
||||
use ndarray::{s, Array, Array1, Zip};
|
||||
use polars::prelude::*;
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
use crate::utils::qdf::check_quantamental_dataframe;
|
||||
use crate::utils::qdf::pivots::*;
|
||||
use crate::utils::qdf::reduce_df::*;
|
||||
use crate::utils::qdf::pivots::{pivot_dataframe_by_ticker, pivot_wide_dataframe_to_qdf};
|
||||
use crate::utils::qdf::reduce_df::reduce_dataframe;
|
||||
use polars::prelude::*;
|
||||
use std::collections::HashMap;
|
||||
const TOLERANCE: f64 = 1e-8;
|
||||
@@ -108,14 +108,42 @@ fn _form_agg_nan_mask_series(nan_mask_dfw: &DataFrame) -> Result<Series, PolarsE
|
||||
Ok(combined.into_series())
|
||||
}
|
||||
|
||||
/// Form the weights DataFrame
|
||||
fn _form_agg_weights_dfw(
|
||||
agg_weights_map: &HashMap<String, Vec<f64>>,
|
||||
data_dfw: DataFrame,
|
||||
agg_weights_map: &HashMap<String, (WeightValue, f64)>,
|
||||
dfw: &DataFrame,
|
||||
) -> Result<DataFrame, PolarsError> {
|
||||
let mut weights_dfw = DataFrame::new(vec![])?;
|
||||
for (agg_targ, weight_signs) in agg_weights_map.iter() {
|
||||
let wgt = weight_signs[0] * weight_signs[1];
|
||||
let wgt_series = Series::new(agg_targ.into(), vec![wgt; data_dfw.height()]);
|
||||
// let wgt = weight_signs[0] * weight_signs[1];
|
||||
let wgt_series = match &weight_signs.0 {
|
||||
WeightValue::F64(val) => {
|
||||
let wgt = val * weight_signs.1;
|
||||
Series::new(agg_targ.into(), vec![wgt; dfw.height()])
|
||||
}
|
||||
WeightValue::Str(vstr) => {
|
||||
// vstr column from data_dfw, else raise wieght specification error
|
||||
if !dfw.get_column_names().contains(&&PlSmallStr::from(vstr)) {
|
||||
return Err(PolarsError::ComputeError(
|
||||
format!(
|
||||
"The column {} does not exist in the DataFrame. {:?}",
|
||||
vstr, agg_weights_map
|
||||
)
|
||||
.into(),
|
||||
));
|
||||
}
|
||||
let vstr_series = dfw.column(vstr)?;
|
||||
let multiplied_series = vstr_series * weight_signs.1;
|
||||
let mut multiplied_series =
|
||||
multiplied_series.as_series().cloned().ok_or_else(|| {
|
||||
PolarsError::ComputeError(
|
||||
"Failed to convert multiplied_series to Series".into(),
|
||||
)
|
||||
})?;
|
||||
multiplied_series.rename(agg_targ.into());
|
||||
multiplied_series
|
||||
}
|
||||
};
|
||||
weights_dfw.with_column(wgt_series)?;
|
||||
}
|
||||
Ok(weights_dfw)
|
||||
@@ -143,14 +171,14 @@ fn perform_single_group_agg(
|
||||
dfw: &DataFrame,
|
||||
agg_on: &String,
|
||||
agg_targs: &Vec<String>,
|
||||
agg_weights_map: &HashMap<String, Vec<f64>>,
|
||||
agg_weights_map: &HashMap<String, (WeightValue, f64)>,
|
||||
normalize_weights: bool,
|
||||
complete: bool,
|
||||
) -> Result<Column, PolarsError> {
|
||||
let data_dfw = _form_agg_data_dfw(dfw, agg_targs)?;
|
||||
let nan_mask_dfw = _form_agg_nan_mask_dfw(&data_dfw)?;
|
||||
let nan_mask_series = _form_agg_nan_mask_series(&nan_mask_dfw)?;
|
||||
let weights_dfw = _form_agg_weights_dfw(agg_weights_map, data_dfw.clone())?;
|
||||
let weights_dfw = _form_agg_weights_dfw(agg_weights_map, dfw)?;
|
||||
let weights_dfw = match normalize_weights {
|
||||
true => normalize_weights_with_nan_mask(weights_dfw, nan_mask_dfw)?,
|
||||
false => weights_dfw,
|
||||
@@ -192,7 +220,7 @@ fn perform_single_group_agg(
|
||||
fn perform_multiplication(
|
||||
dfw: &DataFrame,
|
||||
mult_targets: &HashMap<String, Vec<String>>,
|
||||
weights_map: &HashMap<String, HashMap<String, Vec<f64>>>,
|
||||
weights_map: &HashMap<String, HashMap<String, (WeightValue, f64)>>,
|
||||
complete: bool,
|
||||
normalize_weights: bool,
|
||||
) -> Result<DataFrame, PolarsError> {
|
||||
@@ -200,6 +228,7 @@ fn perform_multiplication(
|
||||
// let mut new_dfw = DataFrame::new(vec![real_date])?;
|
||||
let mut new_dfw = DataFrame::new(vec![])?;
|
||||
assert!(!mult_targets.is_empty(), "agg_targs is empty");
|
||||
|
||||
for (agg_on, agg_targs) in mult_targets.iter() {
|
||||
// perform_single_group_agg
|
||||
let cols_len = new_dfw.get_column_names().len();
|
||||
@@ -288,76 +317,122 @@ fn get_mul_targets(
|
||||
Ok(mul_targets)
|
||||
}
|
||||
|
||||
/// Builds a map of the shape:
|
||||
/// `HashMap<String, HashMap<String, (WeightValue, f64)>>`
|
||||
/// where only one of `weights` or `weight_xcats` can be provided.
|
||||
/// If neither is provided, weights default to 1.0.
|
||||
/// Each tuple is `(WeightValue, f64) = (weight, sign)`.
|
||||
fn form_weights_and_signs_map(
|
||||
cids: Vec<String>,
|
||||
xcats: Vec<String>,
|
||||
weights: Option<Vec<f64>>,
|
||||
weight_xcat: Option<String>,
|
||||
signs: Option<Vec<f64>>,
|
||||
) -> Result<HashMap<String, HashMap<String, Vec<f64>>>, Box<dyn std::error::Error>> {
|
||||
let _agg_xcats_for_cid = agg_xcats_for_cid(cids.clone(), xcats.clone());
|
||||
|
||||
) -> Result<HashMap<String, HashMap<String, (WeightValue, f64)>>, Box<dyn std::error::Error>> {
|
||||
// For demonstration, we pretend to load or infer these from helpers:
|
||||
let agg_xcats_for_cid = agg_xcats_for_cid(cids.clone(), xcats.clone());
|
||||
let (agg_on, agg_targ) = get_agg_on_agg_targs(cids.clone(), xcats.clone());
|
||||
|
||||
// if weights are None, create a vector of 1s of the same length as agg_targ
|
||||
let weights = weights.unwrap_or(vec![1.0 / agg_targ.len() as f64; agg_targ.len()]);
|
||||
let signs = signs.unwrap_or(vec![1.0; agg_targ.len()]);
|
||||
// Determine if each weight option has non-empty values.
|
||||
let weights_provided = weights.as_ref().map_or(false, |v| !v.is_empty());
|
||||
let weight_xcats_provided = weight_xcat.as_ref().map_or(false, |v| !v.is_empty());
|
||||
|
||||
// check that the lengths of weights and signs match the length of agg_targ
|
||||
check_weights_signs_lengths(
|
||||
weights.clone(),
|
||||
signs.clone(),
|
||||
_agg_xcats_for_cid,
|
||||
agg_targ.len(),
|
||||
)?;
|
||||
// Enforce that only one of weights or weight_xcats is specified.
|
||||
if weights_provided && weight_xcats_provided {
|
||||
return Err("Only one of `weights` and `weight_xcats` may be specified.".into());
|
||||
}
|
||||
|
||||
let mut weights_map = HashMap::new();
|
||||
// 1) Build the "actual_weights" vector as WeightValue.
|
||||
let actual_weights: Vec<WeightValue> = if weights_provided {
|
||||
weights.unwrap().into_iter().map(WeightValue::F64).collect()
|
||||
} else if weight_xcats_provided {
|
||||
vec![WeightValue::Str(weight_xcat.unwrap()); agg_targ.len()]
|
||||
} else {
|
||||
// Default to numeric 1.0 if neither is provided
|
||||
vec![WeightValue::F64(1.0); agg_targ.len()]
|
||||
};
|
||||
|
||||
// 2) Build the "signs" vector; default to 1.0 if not provided
|
||||
let signs = signs.unwrap_or_else(|| vec![1.0; agg_targ.len()]);
|
||||
|
||||
// 3) Optional: check lengths & zero values (only numeric weights).
|
||||
check_weights_signs_lengths(&actual_weights, &signs, agg_xcats_for_cid, agg_targ.len())?;
|
||||
|
||||
// 4) Build the final nested HashMap
|
||||
let mut weights_map: HashMap<String, HashMap<String, (WeightValue, f64)>> = HashMap::new();
|
||||
|
||||
for agg_o in agg_on {
|
||||
let mut agg_t_map = HashMap::new();
|
||||
for (i, agg_t) in agg_targ.iter().enumerate() {
|
||||
let ticker = match _agg_xcats_for_cid {
|
||||
true => format!("{}_{}", agg_o, agg_t),
|
||||
false => format!("{}_{}", agg_t, agg_o),
|
||||
// Format the ticker
|
||||
let ticker = if agg_xcats_for_cid {
|
||||
format!("{}_{}", agg_o, agg_t)
|
||||
} else {
|
||||
format!("{}_{}", agg_t, agg_o)
|
||||
};
|
||||
let weight_signs = vec![weights[i], signs[i]];
|
||||
agg_t_map.insert(ticker, weight_signs);
|
||||
// Build the tuple (WeightValue, f64)
|
||||
let weight_sign_tuple = match &actual_weights[i] {
|
||||
WeightValue::F64(val) => (WeightValue::F64(*val).clone(), signs[i]),
|
||||
WeightValue::Str(vstr) => {
|
||||
let new_str = format!("{}_{}", agg_t, vstr);
|
||||
(WeightValue::Str(new_str), signs[i])
|
||||
}
|
||||
};
|
||||
agg_t_map.insert(ticker, weight_sign_tuple);
|
||||
}
|
||||
weights_map.insert(agg_o.clone(), agg_t_map);
|
||||
}
|
||||
|
||||
Ok(weights_map)
|
||||
}
|
||||
|
||||
/// Checks that the given slices have the expected length and that:
|
||||
/// - numeric weights are non-zero,
|
||||
/// - signs are non-zero.
|
||||
fn check_weights_signs_lengths(
|
||||
weights_vec: Vec<f64>,
|
||||
signs_vec: Vec<f64>,
|
||||
_agg_xcats_for_cid: bool,
|
||||
weights_vec: &[WeightValue],
|
||||
signs_vec: &[f64],
|
||||
agg_xcats_for_cid: bool,
|
||||
agg_targ_len: usize,
|
||||
) -> Result<(), Box<dyn std::error::Error>> {
|
||||
// for vx, vname in ...
|
||||
let agg_targ = match _agg_xcats_for_cid {
|
||||
true => "xcats",
|
||||
false => "cids",
|
||||
};
|
||||
for (vx, vname) in vec![
|
||||
(weights_vec.clone(), "weights"),
|
||||
(signs_vec.clone(), "signs"),
|
||||
] {
|
||||
for (i, v) in vx.iter().enumerate() {
|
||||
if *v == 0.0 {
|
||||
return Err(format!("The {} at index {} is 0.0", vname, i).into());
|
||||
// For diagnostics, decide what to call the dimension
|
||||
let agg_targ = if agg_xcats_for_cid { "xcats" } else { "cids" };
|
||||
|
||||
// 1) Check numeric weights for zeroes.
|
||||
for (i, weight) in weights_vec.iter().enumerate() {
|
||||
if let WeightValue::F64(val) = weight {
|
||||
if *val == 0.0 {
|
||||
return Err(format!("The weight at index {} is 0.0", i).into());
|
||||
}
|
||||
}
|
||||
if vx.len() != agg_targ_len {
|
||||
}
|
||||
// 2) Ensure the weights vector is the expected length.
|
||||
if weights_vec.len() != agg_targ_len {
|
||||
return Err(format!(
|
||||
"The length of {} ({}) does not match the length of {} ({})",
|
||||
vname,
|
||||
vx.len(),
|
||||
"The length of weights ({}) does not match the length of {} ({})",
|
||||
weights_vec.len(),
|
||||
agg_targ,
|
||||
agg_targ_len
|
||||
)
|
||||
.into());
|
||||
}
|
||||
|
||||
// 3) Check signs for zero.
|
||||
for (i, sign) in signs_vec.iter().enumerate() {
|
||||
if *sign == 0.0 {
|
||||
return Err(format!("The sign at index {} is 0.0", i).into());
|
||||
}
|
||||
}
|
||||
// 4) Ensure the signs vector is the expected length.
|
||||
if signs_vec.len() != agg_targ_len {
|
||||
return Err(format!(
|
||||
"The length of signs ({}) does not match the length of {} ({})",
|
||||
signs_vec.len(),
|
||||
agg_targ,
|
||||
agg_targ_len
|
||||
)
|
||||
.into());
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
fn rename_result_dfw_cols(
|
||||
@@ -393,6 +468,36 @@ fn agg_xcats_for_cid(cids: Vec<String>, xcats: Vec<String>) -> bool {
|
||||
xcats.len() > 1
|
||||
}
|
||||
|
||||
/// Represents a weight value that can be a string, (float, or integer).
|
||||
#[derive(Debug, Clone, PartialEq)]
|
||||
pub enum WeightValue {
|
||||
Str(String),
|
||||
F64(f64),
|
||||
}
|
||||
impl From<String> for WeightValue {
|
||||
fn from(s: String) -> Self {
|
||||
WeightValue::Str(s)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> From<&'a str> for WeightValue {
|
||||
fn from(s: &'a str) -> Self {
|
||||
WeightValue::Str(s.to_string())
|
||||
}
|
||||
}
|
||||
|
||||
impl From<f64> for WeightValue {
|
||||
fn from(f: f64) -> Self {
|
||||
WeightValue::F64(f)
|
||||
}
|
||||
}
|
||||
|
||||
impl From<i32> for WeightValue {
|
||||
fn from(i: i32) -> Self {
|
||||
WeightValue::F64(i as f64)
|
||||
}
|
||||
}
|
||||
|
||||
/// Weighted linear combinations of cross sections or categories
|
||||
/// # Arguments
|
||||
/// * `df` - QDF DataFrame
|
||||
@@ -417,7 +522,7 @@ pub fn linear_composite(
|
||||
cids: Vec<String>,
|
||||
weights: Option<Vec<f64>>,
|
||||
signs: Option<Vec<f64>>,
|
||||
weight_xcats: Option<Vec<String>>,
|
||||
weight_xcat: Option<String>,
|
||||
normalize_weights: bool,
|
||||
start: Option<String>,
|
||||
end: Option<String>,
|
||||
@@ -429,10 +534,28 @@ pub fn linear_composite(
|
||||
) -> Result<DataFrame, Box<dyn std::error::Error>> {
|
||||
// Check if the DataFrame is a Quantamental DataFrame
|
||||
check_quantamental_dataframe(df)?;
|
||||
|
||||
if agg_xcats_for_cid(cids.clone(), xcats.clone()) {
|
||||
if weight_xcat.is_some() {
|
||||
return Err(
|
||||
format!(
|
||||
"Using xcats as weights is not supported when aggregating cids for a single xcat. {:?} {:?}",
|
||||
cids, xcats
|
||||
)
|
||||
.into(),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
let mut rxcats = xcats.clone();
|
||||
if weight_xcat.is_some() {
|
||||
rxcats.extend(vec![weight_xcat.clone().unwrap()]);
|
||||
}
|
||||
|
||||
let rdf = reduce_dataframe(
|
||||
df.clone(),
|
||||
Some(cids.clone()),
|
||||
Some(xcats.clone()),
|
||||
Some(rxcats.clone()),
|
||||
Some(vec!["value".to_string()]),
|
||||
start.clone(),
|
||||
end.clone(),
|
||||
@@ -443,10 +566,11 @@ pub fn linear_composite(
|
||||
let new_xcat = new_xcat.unwrap_or_else(|| "COMPOSITE".to_string());
|
||||
let new_cid = new_cid.unwrap_or_else(|| "GLB".to_string());
|
||||
|
||||
let dfw = pivot_dataframe_by_ticker(rdf.clone(), Some("value".to_string())).unwrap();
|
||||
let dfw = pivot_dataframe_by_ticker(rdf, Some("value".to_string())).unwrap();
|
||||
|
||||
let mul_targets = get_mul_targets(cids.clone(), xcats.clone())?;
|
||||
let weights_map = form_weights_and_signs_map(cids.clone(), xcats.clone(), weights, signs)?;
|
||||
let weights_map =
|
||||
form_weights_and_signs_map(cids.clone(), xcats.clone(), weights, weight_xcat, signs)?;
|
||||
|
||||
for (ticker, targets) in mul_targets.iter() {
|
||||
println!("ticker: {}, targets: {:?}", ticker, targets);
|
||||
|
||||
27
src/utils/qdf/blacklist.rs
Normal file
27
src/utils/qdf/blacklist.rs
Normal file
@@ -0,0 +1,27 @@
|
||||
use crate::utils::dateutils::{get_bdates_series_default_opt, get_min_max_real_dates};
|
||||
use crate::utils::qdf::core::*;
|
||||
use chrono::{Duration, NaiveDate};
|
||||
use polars::prelude::*;
|
||||
use std::collections::HashMap;
|
||||
use std::error::Error;
|
||||
|
||||
use super::pivots::pivot_dataframe_by_ticker;
|
||||
|
||||
/// The required columns for a Quantamental DataFrame.
|
||||
const QDF_INDEX_COLUMNS: [&str; 3] = ["real_date", "cid", "xcat"];
|
||||
|
||||
pub fn create_blacklist_from_qdf(
|
||||
df: &DataFrame,
|
||||
metric: Option<String>,
|
||||
start: Option<String>,
|
||||
end: Option<String>,
|
||||
) -> Result<HashMap<String, Vec<String>>, Box<dyn Error>> {
|
||||
// Verify that the DataFrame follows the Quantamental structure.
|
||||
check_quantamental_dataframe(df)?;
|
||||
let mut blacklist: HashMap<String, Vec<String>> = HashMap::new();
|
||||
|
||||
// Use the provided metric or default to "value".
|
||||
let metric = metric.unwrap_or_else(|| "value".into());
|
||||
|
||||
Ok(blacklist)
|
||||
}
|
||||
@@ -1,11 +1,12 @@
|
||||
pub mod blacklist;
|
||||
pub mod core;
|
||||
pub mod update_df;
|
||||
pub mod load;
|
||||
pub mod reduce_df;
|
||||
pub mod pivots;
|
||||
pub mod reduce_df;
|
||||
pub mod update_df;
|
||||
|
||||
// Re-export submodules for easier access
|
||||
pub use core::*;
|
||||
pub use update_df::*;
|
||||
pub use load::*;
|
||||
pub use reduce_df::*;
|
||||
pub use update_df::*;
|
||||
Reference in New Issue
Block a user