mirror of
https://github.com/Magnus167/msyrs.git
synced 2025-11-19 22:06:11 +00:00
Compare commits
8 Commits
f0a9242d10
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
1275e7c2c9 | ||
|
|
0e4d58a9d8 | ||
|
|
d16764944b | ||
|
|
80603aa951 | ||
|
|
fb2efa99ac | ||
|
|
178de83d1a | ||
|
|
ee531deb7a | ||
|
|
0443906cc9 |
1
.gitattributes
vendored
Normal file
1
.gitattributes
vendored
Normal file
@@ -0,0 +1 @@
|
||||
notebooks/** linguist-vendored
|
||||
65
notebooks/funcwise/basic-utils.ipynb
vendored
65
notebooks/funcwise/basic-utils.ipynb
vendored
File diff suppressed because one or more lines are too long
@@ -1,7 +1,6 @@
|
||||
use pyo3::{prelude::*, types::PyDict};
|
||||
use pyo3_polars::{PyDataFrame, PySeries};
|
||||
|
||||
|
||||
/// Python wrapper for [`crate::utils::qdf`] module.
|
||||
#[allow(deprecated)]
|
||||
#[pymodule]
|
||||
@@ -37,18 +36,18 @@ pub fn get_bdates_series_default_opt(
|
||||
}
|
||||
|
||||
#[allow(deprecated)]
|
||||
#[pyfunction(signature = (df, group_by_cid=None, blacklist_name=None, metric=None))]
|
||||
#[pyfunction(signature = (df, group_by_cid=None, blacklist_name=None, metrics=None))]
|
||||
pub fn create_blacklist_from_qdf(
|
||||
df: PyDataFrame,
|
||||
group_by_cid: Option<bool>,
|
||||
blacklist_name: Option<String>,
|
||||
metric: Option<String>,
|
||||
metrics: Option<Vec<String>>,
|
||||
) -> PyResult<PyObject> {
|
||||
let result = crate::utils::qdf::blacklist::create_blacklist_from_qdf(
|
||||
&df.into(),
|
||||
group_by_cid,
|
||||
blacklist_name,
|
||||
metric,
|
||||
metrics,
|
||||
)
|
||||
.map_err(|e| PyErr::new::<pyo3::exceptions::PyValueError, _>(format!("{}", e)))?;
|
||||
Python::with_gil(|py| {
|
||||
|
||||
@@ -7,15 +7,73 @@ use polars::prelude::*;
|
||||
use std::collections::{BTreeMap, HashMap};
|
||||
use std::error::Error;
|
||||
|
||||
use crate::utils::qdf::get_unique_metrics;
|
||||
|
||||
// struct Blacklist which is a wrapper around hashmap and btreemap
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Blacklist {
|
||||
pub blacklist: BTreeMap<String, (String, String)>,
|
||||
}
|
||||
|
||||
// impl hashmap into
|
||||
impl Blacklist {
|
||||
pub fn into_hashmap(self) -> HashMap<String, (String, String)> {
|
||||
self.blacklist.into_iter().collect()
|
||||
}
|
||||
}
|
||||
|
||||
/// Apply a blacklist to a Quantamental DataFrame.
|
||||
///
|
||||
/// * `blacklist` is a map from any “ticker‑like” key to a tuple of
|
||||
/// `(start_date, end_date)` in **inclusive** `"YYYY‑MM‑DD"` format.
|
||||
/// * `metrics` – if `None`, every metric from `get_unique_metrics(df)`
|
||||
/// is used.
|
||||
/// * `group_by_cid = Some(false)` is not implemented yet.
|
||||
pub fn apply_blacklist(
|
||||
df: &mut DataFrame,
|
||||
blacklist: &BTreeMap<String, (String, String)>,
|
||||
metrics: Option<Vec<String>>,
|
||||
group_by_cid: Option<bool>,
|
||||
) -> Result<DataFrame, Box<dyn std::error::Error>> {
|
||||
check_quantamental_dataframe(df)?;
|
||||
// dataframe is like:
|
||||
// | cid | xcat | real_date | metric1 | metric2 |
|
||||
// |-----|------|-----------|---------|---------|
|
||||
// | A | B | 2023-01-01| 1.0 | 2.0 |
|
||||
// | A | B | 2023-01-02| 1.0 | 2.0 |
|
||||
// | A | C | 2023-01-01| 1.0 | 2.0 |
|
||||
// | A | C | 2023-01-02| 1.0 | 2.0 |
|
||||
// | D | E | 2023-01-01| 1.0 | 2.0 |
|
||||
// | D | E | 2023-01-02| 1.0 | 2.0 |
|
||||
|
||||
// (real date column is Naive date)
|
||||
|
||||
// blacklist is like:
|
||||
// {'A_B_1': ('2023-01-02', '2023-01-03'),
|
||||
// 'A_B_2': ('2023-01-04', '2023-01-05'),
|
||||
// 'A_C_1': ('2023-01-02', '2023-01-03'), }
|
||||
|
||||
// get_cid('A_B_1') = 'A'
|
||||
// get_cid('A_B_2') = 'A'
|
||||
// get_cid('D_E_1') = 'D'
|
||||
|
||||
Ok(df.clone())
|
||||
}
|
||||
/// Create a blacklist from a Quantamental DataFrame.
|
||||
/// The blacklist is a mapping of tickers to date ranges where the specified metrics are null or NaN.
|
||||
/// # Arguments:
|
||||
/// * `df` - The Quantamental DataFrame.
|
||||
/// * `group_by_cid` - If true, group the blacklist by `cid`. Defaults to true.
|
||||
/// * `blacklist_name` - The name of the blacklist. Defaults to "BLACKLIST".
|
||||
/// * `metrics` - The metrics to check for null or NaN values. If None, all metrics are used.
|
||||
pub fn create_blacklist_from_qdf(
|
||||
df: &DataFrame,
|
||||
group_by_cid: Option<bool>,
|
||||
blacklist_name: Option<String>,
|
||||
metric: Option<String>,
|
||||
metrics: Option<Vec<String>>,
|
||||
) -> Result<BTreeMap<String, (String, String)>, Box<dyn Error>> {
|
||||
check_quantamental_dataframe(df)?;
|
||||
|
||||
let metric = metric.unwrap_or_else(|| "value".into());
|
||||
let metrics = metrics.unwrap_or_else(|| get_unique_metrics(df).unwrap());
|
||||
let blacklist_name = blacklist_name.unwrap_or_else(|| "BLACKLIST".into());
|
||||
let group_by_cid = group_by_cid.unwrap_or(true);
|
||||
|
||||
@@ -29,19 +87,26 @@ pub fn create_blacklist_from_qdf(
|
||||
BDateFreq::Daily,
|
||||
)?;
|
||||
|
||||
// filter df
|
||||
let null_mask = df.column(metric.as_str())?.is_null();
|
||||
let nan_mask = df.column(metric.as_str())?.is_nan()?;
|
||||
let null_mask = null_mask | nan_mask;
|
||||
let df = df.filter(&null_mask)?;
|
||||
// if none of the metrics are null or NaN, return an empty blacklist
|
||||
if !metrics.iter().any(|metric| {
|
||||
df.column(metric)
|
||||
.map(|col| col.is_null().any())
|
||||
.unwrap_or(false)
|
||||
}) {
|
||||
return Ok(BTreeMap::new());
|
||||
}
|
||||
|
||||
// let null_mask = get_nan_mask(df, metrics)?;
|
||||
// let df = df.filter(&null_mask)?.clone();
|
||||
|
||||
let df = df
|
||||
.clone()
|
||||
.lazy()
|
||||
.filter(
|
||||
col(metric.as_str())
|
||||
.is_null()
|
||||
.or(col(metric.as_str()).is_nan()),
|
||||
)
|
||||
.with_columns([
|
||||
(cols(metrics.clone()).is_null().or(cols(metrics).is_nan())).alias("null_mask")
|
||||
])
|
||||
.filter(col("null_mask"))
|
||||
// if is now empty, return an empty blacklist
|
||||
.sort(
|
||||
["cid", "xcat"],
|
||||
SortMultipleOptions::default().with_maintain_order(true),
|
||||
@@ -111,6 +176,27 @@ pub fn create_blacklist_from_qdf(
|
||||
Ok(btree_map)
|
||||
}
|
||||
|
||||
/// Get a mask of NaN values for the specified metrics in the DataFrame.
|
||||
#[allow(dead_code)]
|
||||
fn get_nan_mask(
|
||||
df: &DataFrame,
|
||||
metrics: Vec<String>,
|
||||
) -> Result<ChunkedArray<BooleanType>, Box<dyn Error>> {
|
||||
let null_masks: Vec<ChunkedArray<BooleanType>> = metrics
|
||||
.iter()
|
||||
.map(|metric| {
|
||||
let null_mask = df.column(metric.as_str())?.is_null();
|
||||
let nan_mask = df.column(metric.as_str())?.is_nan()?;
|
||||
Ok(null_mask | nan_mask)
|
||||
})
|
||||
.collect::<Result<_, Box<dyn Error>>>()?;
|
||||
let null_mask = null_masks
|
||||
.into_iter()
|
||||
.reduce(|acc, mask| acc | mask)
|
||||
.unwrap_or_else(|| BooleanChunked::full_null("null_mask".into(), df.height()));
|
||||
Ok(null_mask)
|
||||
}
|
||||
|
||||
fn convert_dates_list_to_date_ranges(
|
||||
blacklist: Vec<String>,
|
||||
all_bdates_strs: Vec<String>,
|
||||
@@ -275,7 +361,13 @@ mod tests {
|
||||
// Expect two ranges:
|
||||
// range 0 => ("2023-01-02", "2023-01-03")
|
||||
// range 1 => ("2023-01-05", "2023-01-05")
|
||||
assert_eq!(result["0"], ("2023-01-02".to_string(), "2023-01-03".to_string()));
|
||||
assert_eq!(result["1"], ("2023-01-05".to_string(), "2023-01-05".to_string()));
|
||||
assert_eq!(
|
||||
result["0"],
|
||||
("2023-01-02".to_string(), "2023-01-03".to_string())
|
||||
);
|
||||
assert_eq!(
|
||||
result["1"],
|
||||
("2023-01-05".to_string(), "2023-01-05".to_string())
|
||||
);
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user