Compare commits

...

8 Commits

4 changed files with 128 additions and 71 deletions

1
.gitattributes vendored Normal file
View File

@@ -0,0 +1 @@
notebooks/** linguist-vendored

File diff suppressed because one or more lines are too long

View File

@@ -1,7 +1,6 @@
use pyo3::{prelude::*, types::PyDict};
use pyo3_polars::{PyDataFrame, PySeries};
/// Python wrapper for [`crate::utils::qdf`] module.
#[allow(deprecated)]
#[pymodule]
@@ -37,18 +36,18 @@ pub fn get_bdates_series_default_opt(
}
#[allow(deprecated)]
#[pyfunction(signature = (df, group_by_cid=None, blacklist_name=None, metric=None))]
#[pyfunction(signature = (df, group_by_cid=None, blacklist_name=None, metrics=None))]
pub fn create_blacklist_from_qdf(
df: PyDataFrame,
group_by_cid: Option<bool>,
blacklist_name: Option<String>,
metric: Option<String>,
metrics: Option<Vec<String>>,
) -> PyResult<PyObject> {
let result = crate::utils::qdf::blacklist::create_blacklist_from_qdf(
&df.into(),
group_by_cid,
blacklist_name,
metric,
metrics,
)
.map_err(|e| PyErr::new::<pyo3::exceptions::PyValueError, _>(format!("{}", e)))?;
Python::with_gil(|py| {

View File

@@ -7,15 +7,73 @@ use polars::prelude::*;
use std::collections::{BTreeMap, HashMap};
use std::error::Error;
use crate::utils::qdf::get_unique_metrics;
// struct Blacklist which is a wrapper around hashmap and btreemap
#[derive(Debug, Clone)]
pub struct Blacklist {
pub blacklist: BTreeMap<String, (String, String)>,
}
// impl hashmap into
impl Blacklist {
pub fn into_hashmap(self) -> HashMap<String, (String, String)> {
self.blacklist.into_iter().collect()
}
}
/// Apply a blacklist to a Quantamental DataFrame.
///
/// * `blacklist` is a map from any “tickerlike” key to a tuple of
/// `(start_date, end_date)` in **inclusive** `"YYYYMMDD"` format.
/// * `metrics` if `None`, every metric from `get_unique_metrics(df)`
/// is used.
/// * `group_by_cid = Some(false)` is not implemented yet.
pub fn apply_blacklist(
df: &mut DataFrame,
blacklist: &BTreeMap<String, (String, String)>,
metrics: Option<Vec<String>>,
group_by_cid: Option<bool>,
) -> Result<DataFrame, Box<dyn std::error::Error>> {
check_quantamental_dataframe(df)?;
// dataframe is like:
// | cid | xcat | real_date | metric1 | metric2 |
// |-----|------|-----------|---------|---------|
// | A | B | 2023-01-01| 1.0 | 2.0 |
// | A | B | 2023-01-02| 1.0 | 2.0 |
// | A | C | 2023-01-01| 1.0 | 2.0 |
// | A | C | 2023-01-02| 1.0 | 2.0 |
// | D | E | 2023-01-01| 1.0 | 2.0 |
// | D | E | 2023-01-02| 1.0 | 2.0 |
// (real date column is Naive date)
// blacklist is like:
// {'A_B_1': ('2023-01-02', '2023-01-03'),
// 'A_B_2': ('2023-01-04', '2023-01-05'),
// 'A_C_1': ('2023-01-02', '2023-01-03'), }
// get_cid('A_B_1') = 'A'
// get_cid('A_B_2') = 'A'
// get_cid('D_E_1') = 'D'
Ok(df.clone())
}
/// Create a blacklist from a Quantamental DataFrame.
/// The blacklist is a mapping of tickers to date ranges where the specified metrics are null or NaN.
/// # Arguments:
/// * `df` - The Quantamental DataFrame.
/// * `group_by_cid` - If true, group the blacklist by `cid`. Defaults to true.
/// * `blacklist_name` - The name of the blacklist. Defaults to "BLACKLIST".
/// * `metrics` - The metrics to check for null or NaN values. If None, all metrics are used.
pub fn create_blacklist_from_qdf(
df: &DataFrame,
group_by_cid: Option<bool>,
blacklist_name: Option<String>,
metric: Option<String>,
metrics: Option<Vec<String>>,
) -> Result<BTreeMap<String, (String, String)>, Box<dyn Error>> {
check_quantamental_dataframe(df)?;
let metric = metric.unwrap_or_else(|| "value".into());
let metrics = metrics.unwrap_or_else(|| get_unique_metrics(df).unwrap());
let blacklist_name = blacklist_name.unwrap_or_else(|| "BLACKLIST".into());
let group_by_cid = group_by_cid.unwrap_or(true);
@@ -29,19 +87,26 @@ pub fn create_blacklist_from_qdf(
BDateFreq::Daily,
)?;
// filter df
let null_mask = df.column(metric.as_str())?.is_null();
let nan_mask = df.column(metric.as_str())?.is_nan()?;
let null_mask = null_mask | nan_mask;
let df = df.filter(&null_mask)?;
// if none of the metrics are null or NaN, return an empty blacklist
if !metrics.iter().any(|metric| {
df.column(metric)
.map(|col| col.is_null().any())
.unwrap_or(false)
}) {
return Ok(BTreeMap::new());
}
// let null_mask = get_nan_mask(df, metrics)?;
// let df = df.filter(&null_mask)?.clone();
let df = df
.clone()
.lazy()
.filter(
col(metric.as_str())
.is_null()
.or(col(metric.as_str()).is_nan()),
)
.with_columns([
(cols(metrics.clone()).is_null().or(cols(metrics).is_nan())).alias("null_mask")
])
.filter(col("null_mask"))
// if is now empty, return an empty blacklist
.sort(
["cid", "xcat"],
SortMultipleOptions::default().with_maintain_order(true),
@@ -111,6 +176,27 @@ pub fn create_blacklist_from_qdf(
Ok(btree_map)
}
/// Get a mask of NaN values for the specified metrics in the DataFrame.
#[allow(dead_code)]
fn get_nan_mask(
df: &DataFrame,
metrics: Vec<String>,
) -> Result<ChunkedArray<BooleanType>, Box<dyn Error>> {
let null_masks: Vec<ChunkedArray<BooleanType>> = metrics
.iter()
.map(|metric| {
let null_mask = df.column(metric.as_str())?.is_null();
let nan_mask = df.column(metric.as_str())?.is_nan()?;
Ok(null_mask | nan_mask)
})
.collect::<Result<_, Box<dyn Error>>>()?;
let null_mask = null_masks
.into_iter()
.reduce(|acc, mask| acc | mask)
.unwrap_or_else(|| BooleanChunked::full_null("null_mask".into(), df.height()));
Ok(null_mask)
}
fn convert_dates_list_to_date_ranges(
blacklist: Vec<String>,
all_bdates_strs: Vec<String>,
@@ -275,7 +361,13 @@ mod tests {
// Expect two ranges:
// range 0 => ("2023-01-02", "2023-01-03")
// range 1 => ("2023-01-05", "2023-01-05")
assert_eq!(result["0"], ("2023-01-02".to_string(), "2023-01-03".to_string()));
assert_eq!(result["1"], ("2023-01-05".to_string(), "2023-01-05".to_string()));
assert_eq!(
result["0"],
("2023-01-02".to_string(), "2023-01-03".to_string())
);
assert_eq!(
result["1"],
("2023-01-05".to_string(), "2023-01-05".to_string())
);
}
}