mirror of
https://github.com/Magnus167/msyrs.git
synced 2025-11-19 13:56:10 +00:00
Compare commits
25 Commits
cfbd54be7a
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
1275e7c2c9 | ||
|
|
0e4d58a9d8 | ||
|
|
d16764944b | ||
|
|
80603aa951 | ||
|
|
fb2efa99ac | ||
|
|
178de83d1a | ||
|
|
ee531deb7a | ||
|
|
0443906cc9 | ||
|
|
f0a9242d10 | ||
|
|
df22667d63 | ||
|
|
7d4c198067 | ||
|
|
25192e425d | ||
|
|
e602b8b2b4 | ||
|
|
5d2ff3b88d | ||
|
|
3d2afa01a8 | ||
|
|
ed9d5d01a2 | ||
|
|
dda6e3e12f | ||
|
|
5ef2c7e6c7 | ||
|
|
5c3862c297 | ||
|
|
3559a90ad2 | ||
|
|
b7368a366e | ||
|
|
24a4176e17 | ||
|
|
165e1c19e4 | ||
|
|
fefe849394 | ||
| 4e4d1c6625 |
1
.gitattributes
vendored
Normal file
1
.gitattributes
vendored
Normal file
@@ -0,0 +1 @@
|
||||
notebooks/** linguist-vendored
|
||||
240
notebooks/funcwise/basic-utils.ipynb
vendored
240
notebooks/funcwise/basic-utils.ipynb
vendored
File diff suppressed because one or more lines are too long
260
notebooks/funcwise/linear_composites.ipynb
vendored
260
notebooks/funcwise/linear_composites.ipynb
vendored
File diff suppressed because one or more lines are too long
33
scripts/unix/build.sh
Normal file
33
scripts/unix/build.sh
Normal file
@@ -0,0 +1,33 @@
|
||||
#!/bin/bash
|
||||
# Exit immediately if a command exits with a non-zero status
|
||||
set -e
|
||||
|
||||
# Run "maturin --help". If it fails, print an error message and exit.
|
||||
if ! maturin --help > /dev/null 2>&1; then
|
||||
echo "Failed to run maturin --help" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Delete any existing build directory and create a new one.
|
||||
rm -rf ./build
|
||||
mkdir -p ./build
|
||||
|
||||
# Copy ./src/msyrs.pyi to ./msyrs.pyi.
|
||||
cp ./src/msyrs.pyi ./msyrs.pyi
|
||||
|
||||
# Build using maturin.
|
||||
maturin build --release --sdist --out ./build/
|
||||
|
||||
# Get the first wheel file found in the build directory.
|
||||
whl_file=$(ls ./build/*.whl 2>/dev/null | head -n 1)
|
||||
if [ -z "$whl_file" ]; then
|
||||
echo "No wheel file found in ./build" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Rename the wheel file from .whl to .zip.
|
||||
base_name="${whl_file%.whl}"
|
||||
mv "$whl_file" "${base_name}.zip"
|
||||
|
||||
# Delete the temporary .pyi file.
|
||||
rm ./msyrs.pyi
|
||||
20
scripts/unix/install.sh
Normal file
20
scripts/unix/install.sh
Normal file
@@ -0,0 +1,20 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
# Ensure maturin is installed. For example, you can install it via:
|
||||
# pip install maturin
|
||||
|
||||
# Run "maturin --help". If it fails, print an error message and exit.
|
||||
if ! maturin --help > /dev/null 2>&1; then
|
||||
echo "Failed to run maturin --help" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Copy ./src/msyrs.pyi to the current directory as msyrs.pyi
|
||||
cp ./src/msyrs.pyi ./msyrs.pyi
|
||||
|
||||
# Run maturin develop in release mode.
|
||||
maturin develop --release
|
||||
|
||||
# Delete the temporary msyrs.pyi file.
|
||||
rm ./msyrs.pyi
|
||||
@@ -68,7 +68,7 @@ pub fn get_period_indices_hv(dfw: PyDataFrame, est_freq: &str) -> PyResult<Vec<u
|
||||
cids,
|
||||
weights = None,
|
||||
signs = None,
|
||||
weight_xcats = None,
|
||||
weight_xcat = None,
|
||||
normalize_weights = false,
|
||||
start = None,
|
||||
end = None,
|
||||
@@ -84,7 +84,7 @@ pub fn linear_composite(
|
||||
cids: Vec<String>,
|
||||
weights: Option<Vec<f64>>,
|
||||
signs: Option<Vec<f64>>,
|
||||
weight_xcats: Option<Vec<String>>,
|
||||
weight_xcat: Option<String>,
|
||||
normalize_weights: bool,
|
||||
start: Option<String>,
|
||||
end: Option<String>,
|
||||
@@ -101,7 +101,7 @@ pub fn linear_composite(
|
||||
cids,
|
||||
weights,
|
||||
signs,
|
||||
weight_xcats,
|
||||
weight_xcat,
|
||||
normalize_weights,
|
||||
start,
|
||||
end,
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
use pyo3::prelude::*;
|
||||
use pyo3::{prelude::*, types::PyDict};
|
||||
use pyo3_polars::{PyDataFrame, PySeries};
|
||||
|
||||
/// Python wrapper for [`crate::utils::qdf`] module.
|
||||
@@ -7,6 +7,7 @@ use pyo3_polars::{PyDataFrame, PySeries};
|
||||
pub fn utils(_py: Python, m: &PyModule) -> PyResult<()> {
|
||||
m.add_function(wrap_pyfunction!(get_bdates_series_default_pl, m)?)?;
|
||||
m.add_function(wrap_pyfunction!(get_bdates_series_default_opt, m)?)?;
|
||||
m.add_function(wrap_pyfunction!(create_blacklist_from_qdf, m)?)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@@ -33,3 +34,29 @@ pub fn get_bdates_series_default_opt(
|
||||
.map_err(|e| PyErr::new::<pyo3::exceptions::PyValueError, _>(format!("{}", e)))?,
|
||||
))
|
||||
}
|
||||
|
||||
#[allow(deprecated)]
|
||||
#[pyfunction(signature = (df, group_by_cid=None, blacklist_name=None, metrics=None))]
|
||||
pub fn create_blacklist_from_qdf(
|
||||
df: PyDataFrame,
|
||||
group_by_cid: Option<bool>,
|
||||
blacklist_name: Option<String>,
|
||||
metrics: Option<Vec<String>>,
|
||||
) -> PyResult<PyObject> {
|
||||
let result = crate::utils::qdf::blacklist::create_blacklist_from_qdf(
|
||||
&df.into(),
|
||||
group_by_cid,
|
||||
blacklist_name,
|
||||
metrics,
|
||||
)
|
||||
.map_err(|e| PyErr::new::<pyo3::exceptions::PyValueError, _>(format!("{}", e)))?;
|
||||
Python::with_gil(|py| {
|
||||
let dict = PyDict::new(py);
|
||||
// for (key, (start_date, end_date)) in result {
|
||||
// dict.set_item(key, (start_date, end_date))
|
||||
for (key, dates) in result {
|
||||
dict.set_item(key, dates).map_err(|e| PyErr::from(e))?;
|
||||
}
|
||||
Ok(dict.into())
|
||||
})
|
||||
}
|
||||
|
||||
@@ -58,7 +58,7 @@ fn all_jpmaq_expressions(expressions: Vec<String>) -> bool {
|
||||
///
|
||||
/// Example Usage:
|
||||
///
|
||||
/// ```rust
|
||||
/// ```ignore
|
||||
/// use msyrs::download::jpmaqsdownload::JPMaQSDownloadGetIndicatorArgs;
|
||||
/// use msyrs::download::jpmaqsdownload::JPMaQSDownload;
|
||||
///
|
||||
@@ -102,7 +102,7 @@ impl Default for JPMaQSDownloadGetIndicatorArgs {
|
||||
/// Struct for downloading data from the JPMaQS data from JPMorgan DataQuery API.
|
||||
///
|
||||
/// ## Example Usage
|
||||
/// ```rust
|
||||
/// ```ignore
|
||||
/// use msyrs::download::jpmaqsdownload::JPMaQSDownload;
|
||||
/// use msyrs::download::jpmaqsdownload::JPMaQSDownloadGetIndicatorArgs;
|
||||
/// use polars::prelude::*;
|
||||
@@ -277,7 +277,7 @@ impl JPMaQSDownload {
|
||||
///
|
||||
/// Usage:
|
||||
///
|
||||
/// ```rust
|
||||
/// ```ignore
|
||||
/// use msyrs::download::jpmaqsdownload::JPMaQSDownload;
|
||||
/// use msyrs::download::jpmaqsdownload::JPMaQSDownloadGetIndicatorArgs;
|
||||
/// let mut jpamqs_download = JPMaQSDownload::default();
|
||||
|
||||
@@ -56,3 +56,5 @@ class utils:
|
||||
def get_bdates_series_default_pl(*args, **kwargs) -> Series: ...
|
||||
@staticmethod
|
||||
def get_bdates_series_default_opt(*args, **kwargs) -> Series: ...
|
||||
@staticmethod
|
||||
def create_blacklist_from_qdf(*args, **kwargs) -> dict: ...
|
||||
@@ -1,6 +1,6 @@
|
||||
use crate::utils::dateutils::{get_bdates_from_col, get_min_max_real_dates};
|
||||
use crate::utils::qdf::pivots::*;
|
||||
use crate::utils::qdf::reduce_df::*;
|
||||
use crate::utils::qdf::reduce_dataframe;
|
||||
use chrono::NaiveDate;
|
||||
use ndarray::{s, Array, Array1, Zip};
|
||||
use polars::prelude::*;
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
use crate::utils::qdf::check_quantamental_dataframe;
|
||||
use crate::utils::qdf::pivots::*;
|
||||
use crate::utils::qdf::reduce_df::*;
|
||||
use crate::utils::qdf::pivots::{pivot_dataframe_by_ticker, pivot_wide_dataframe_to_qdf};
|
||||
use crate::utils::qdf::reduce_df::reduce_dataframe;
|
||||
use polars::prelude::*;
|
||||
use std::collections::HashMap;
|
||||
const TOLERANCE: f64 = 1e-8;
|
||||
@@ -108,14 +108,42 @@ fn _form_agg_nan_mask_series(nan_mask_dfw: &DataFrame) -> Result<Series, PolarsE
|
||||
Ok(combined.into_series())
|
||||
}
|
||||
|
||||
/// Form the weights DataFrame
|
||||
fn _form_agg_weights_dfw(
|
||||
agg_weights_map: &HashMap<String, Vec<f64>>,
|
||||
data_dfw: DataFrame,
|
||||
agg_weights_map: &HashMap<String, (WeightValue, f64)>,
|
||||
dfw: &DataFrame,
|
||||
) -> Result<DataFrame, PolarsError> {
|
||||
let mut weights_dfw = DataFrame::new(vec![])?;
|
||||
for (agg_targ, weight_signs) in agg_weights_map.iter() {
|
||||
let wgt = weight_signs[0] * weight_signs[1];
|
||||
let wgt_series = Series::new(agg_targ.into(), vec![wgt; data_dfw.height()]);
|
||||
// let wgt = weight_signs[0] * weight_signs[1];
|
||||
let wgt_series = match &weight_signs.0 {
|
||||
WeightValue::F64(val) => {
|
||||
let wgt = val * weight_signs.1;
|
||||
Series::new(agg_targ.into(), vec![wgt; dfw.height()])
|
||||
}
|
||||
WeightValue::Str(vstr) => {
|
||||
// vstr column from data_dfw, else raise wieght specification error
|
||||
if !dfw.get_column_names().contains(&&PlSmallStr::from(vstr)) {
|
||||
return Err(PolarsError::ComputeError(
|
||||
format!(
|
||||
"The column {} does not exist in the DataFrame. {:?}",
|
||||
vstr, agg_weights_map
|
||||
)
|
||||
.into(),
|
||||
));
|
||||
}
|
||||
let vstr_series = dfw.column(vstr)?;
|
||||
let multiplied_series = vstr_series * weight_signs.1;
|
||||
let mut multiplied_series =
|
||||
multiplied_series.as_series().cloned().ok_or_else(|| {
|
||||
PolarsError::ComputeError(
|
||||
"Failed to convert multiplied_series to Series".into(),
|
||||
)
|
||||
})?;
|
||||
multiplied_series.rename(agg_targ.into());
|
||||
multiplied_series
|
||||
}
|
||||
};
|
||||
weights_dfw.with_column(wgt_series)?;
|
||||
}
|
||||
Ok(weights_dfw)
|
||||
@@ -143,14 +171,14 @@ fn perform_single_group_agg(
|
||||
dfw: &DataFrame,
|
||||
agg_on: &String,
|
||||
agg_targs: &Vec<String>,
|
||||
agg_weights_map: &HashMap<String, Vec<f64>>,
|
||||
agg_weights_map: &HashMap<String, (WeightValue, f64)>,
|
||||
normalize_weights: bool,
|
||||
complete: bool,
|
||||
) -> Result<Column, PolarsError> {
|
||||
let data_dfw = _form_agg_data_dfw(dfw, agg_targs)?;
|
||||
let nan_mask_dfw = _form_agg_nan_mask_dfw(&data_dfw)?;
|
||||
let nan_mask_series = _form_agg_nan_mask_series(&nan_mask_dfw)?;
|
||||
let weights_dfw = _form_agg_weights_dfw(agg_weights_map, data_dfw.clone())?;
|
||||
let weights_dfw = _form_agg_weights_dfw(agg_weights_map, dfw)?;
|
||||
let weights_dfw = match normalize_weights {
|
||||
true => normalize_weights_with_nan_mask(weights_dfw, nan_mask_dfw)?,
|
||||
false => weights_dfw,
|
||||
@@ -192,7 +220,7 @@ fn perform_single_group_agg(
|
||||
fn perform_multiplication(
|
||||
dfw: &DataFrame,
|
||||
mult_targets: &HashMap<String, Vec<String>>,
|
||||
weights_map: &HashMap<String, HashMap<String, Vec<f64>>>,
|
||||
weights_map: &HashMap<String, HashMap<String, (WeightValue, f64)>>,
|
||||
complete: bool,
|
||||
normalize_weights: bool,
|
||||
) -> Result<DataFrame, PolarsError> {
|
||||
@@ -200,6 +228,7 @@ fn perform_multiplication(
|
||||
// let mut new_dfw = DataFrame::new(vec![real_date])?;
|
||||
let mut new_dfw = DataFrame::new(vec![])?;
|
||||
assert!(!mult_targets.is_empty(), "agg_targs is empty");
|
||||
|
||||
for (agg_on, agg_targs) in mult_targets.iter() {
|
||||
// perform_single_group_agg
|
||||
let cols_len = new_dfw.get_column_names().len();
|
||||
@@ -288,76 +317,122 @@ fn get_mul_targets(
|
||||
Ok(mul_targets)
|
||||
}
|
||||
|
||||
/// Builds a map of the shape:
|
||||
/// `HashMap<String, HashMap<String, (WeightValue, f64)>>`
|
||||
/// where only one of `weights` or `weight_xcats` can be provided.
|
||||
/// If neither is provided, weights default to 1.0.
|
||||
/// Each tuple is `(WeightValue, f64) = (weight, sign)`.
|
||||
fn form_weights_and_signs_map(
|
||||
cids: Vec<String>,
|
||||
xcats: Vec<String>,
|
||||
weights: Option<Vec<f64>>,
|
||||
weight_xcat: Option<String>,
|
||||
signs: Option<Vec<f64>>,
|
||||
) -> Result<HashMap<String, HashMap<String, Vec<f64>>>, Box<dyn std::error::Error>> {
|
||||
let _agg_xcats_for_cid = agg_xcats_for_cid(cids.clone(), xcats.clone());
|
||||
|
||||
) -> Result<HashMap<String, HashMap<String, (WeightValue, f64)>>, Box<dyn std::error::Error>> {
|
||||
// For demonstration, we pretend to load or infer these from helpers:
|
||||
let agg_xcats_for_cid = agg_xcats_for_cid(cids.clone(), xcats.clone());
|
||||
let (agg_on, agg_targ) = get_agg_on_agg_targs(cids.clone(), xcats.clone());
|
||||
|
||||
// if weights are None, create a vector of 1s of the same length as agg_targ
|
||||
let weights = weights.unwrap_or(vec![1.0 / agg_targ.len() as f64; agg_targ.len()]);
|
||||
let signs = signs.unwrap_or(vec![1.0; agg_targ.len()]);
|
||||
// Determine if each weight option has non-empty values.
|
||||
let weights_provided = weights.as_ref().map_or(false, |v| !v.is_empty());
|
||||
let weight_xcats_provided = weight_xcat.as_ref().map_or(false, |v| !v.is_empty());
|
||||
|
||||
// check that the lengths of weights and signs match the length of agg_targ
|
||||
check_weights_signs_lengths(
|
||||
weights.clone(),
|
||||
signs.clone(),
|
||||
_agg_xcats_for_cid,
|
||||
agg_targ.len(),
|
||||
)?;
|
||||
// Enforce that only one of weights or weight_xcats is specified.
|
||||
if weights_provided && weight_xcats_provided {
|
||||
return Err("Only one of `weights` and `weight_xcats` may be specified.".into());
|
||||
}
|
||||
|
||||
let mut weights_map = HashMap::new();
|
||||
// 1) Build the "actual_weights" vector as WeightValue.
|
||||
let actual_weights: Vec<WeightValue> = if weights_provided {
|
||||
weights.unwrap().into_iter().map(WeightValue::F64).collect()
|
||||
} else if weight_xcats_provided {
|
||||
vec![WeightValue::Str(weight_xcat.unwrap()); agg_targ.len()]
|
||||
} else {
|
||||
// Default to numeric 1.0 if neither is provided
|
||||
vec![WeightValue::F64(1.0); agg_targ.len()]
|
||||
};
|
||||
|
||||
// 2) Build the "signs" vector; default to 1.0 if not provided
|
||||
let signs = signs.unwrap_or_else(|| vec![1.0; agg_targ.len()]);
|
||||
|
||||
// 3) Optional: check lengths & zero values (only numeric weights).
|
||||
check_weights_signs_lengths(&actual_weights, &signs, agg_xcats_for_cid, agg_targ.len())?;
|
||||
|
||||
// 4) Build the final nested HashMap
|
||||
let mut weights_map: HashMap<String, HashMap<String, (WeightValue, f64)>> = HashMap::new();
|
||||
|
||||
for agg_o in agg_on {
|
||||
let mut agg_t_map = HashMap::new();
|
||||
for (i, agg_t) in agg_targ.iter().enumerate() {
|
||||
let ticker = match _agg_xcats_for_cid {
|
||||
true => format!("{}_{}", agg_o, agg_t),
|
||||
false => format!("{}_{}", agg_t, agg_o),
|
||||
// Format the ticker
|
||||
let ticker = if agg_xcats_for_cid {
|
||||
format!("{}_{}", agg_o, agg_t)
|
||||
} else {
|
||||
format!("{}_{}", agg_t, agg_o)
|
||||
};
|
||||
let weight_signs = vec![weights[i], signs[i]];
|
||||
agg_t_map.insert(ticker, weight_signs);
|
||||
// Build the tuple (WeightValue, f64)
|
||||
let weight_sign_tuple = match &actual_weights[i] {
|
||||
WeightValue::F64(val) => (WeightValue::F64(*val).clone(), signs[i]),
|
||||
WeightValue::Str(vstr) => {
|
||||
let new_str = format!("{}_{}", agg_t, vstr);
|
||||
(WeightValue::Str(new_str), signs[i])
|
||||
}
|
||||
};
|
||||
agg_t_map.insert(ticker, weight_sign_tuple);
|
||||
}
|
||||
weights_map.insert(agg_o.clone(), agg_t_map);
|
||||
}
|
||||
|
||||
Ok(weights_map)
|
||||
}
|
||||
|
||||
/// Checks that the given slices have the expected length and that:
|
||||
/// - numeric weights are non-zero,
|
||||
/// - signs are non-zero.
|
||||
fn check_weights_signs_lengths(
|
||||
weights_vec: Vec<f64>,
|
||||
signs_vec: Vec<f64>,
|
||||
_agg_xcats_for_cid: bool,
|
||||
weights_vec: &[WeightValue],
|
||||
signs_vec: &[f64],
|
||||
agg_xcats_for_cid: bool,
|
||||
agg_targ_len: usize,
|
||||
) -> Result<(), Box<dyn std::error::Error>> {
|
||||
// for vx, vname in ...
|
||||
let agg_targ = match _agg_xcats_for_cid {
|
||||
true => "xcats",
|
||||
false => "cids",
|
||||
};
|
||||
for (vx, vname) in vec![
|
||||
(weights_vec.clone(), "weights"),
|
||||
(signs_vec.clone(), "signs"),
|
||||
] {
|
||||
for (i, v) in vx.iter().enumerate() {
|
||||
if *v == 0.0 {
|
||||
return Err(format!("The {} at index {} is 0.0", vname, i).into());
|
||||
// For diagnostics, decide what to call the dimension
|
||||
let agg_targ = if agg_xcats_for_cid { "xcats" } else { "cids" };
|
||||
|
||||
// 1) Check numeric weights for zeroes.
|
||||
for (i, weight) in weights_vec.iter().enumerate() {
|
||||
if let WeightValue::F64(val) = weight {
|
||||
if *val == 0.0 {
|
||||
return Err(format!("The weight at index {} is 0.0", i).into());
|
||||
}
|
||||
}
|
||||
if vx.len() != agg_targ_len {
|
||||
}
|
||||
// 2) Ensure the weights vector is the expected length.
|
||||
if weights_vec.len() != agg_targ_len {
|
||||
return Err(format!(
|
||||
"The length of {} ({}) does not match the length of {} ({})",
|
||||
vname,
|
||||
vx.len(),
|
||||
"The length of weights ({}) does not match the length of {} ({})",
|
||||
weights_vec.len(),
|
||||
agg_targ,
|
||||
agg_targ_len
|
||||
)
|
||||
.into());
|
||||
}
|
||||
|
||||
// 3) Check signs for zero.
|
||||
for (i, sign) in signs_vec.iter().enumerate() {
|
||||
if *sign == 0.0 {
|
||||
return Err(format!("The sign at index {} is 0.0", i).into());
|
||||
}
|
||||
}
|
||||
// 4) Ensure the signs vector is the expected length.
|
||||
if signs_vec.len() != agg_targ_len {
|
||||
return Err(format!(
|
||||
"The length of signs ({}) does not match the length of {} ({})",
|
||||
signs_vec.len(),
|
||||
agg_targ,
|
||||
agg_targ_len
|
||||
)
|
||||
.into());
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
fn rename_result_dfw_cols(
|
||||
@@ -393,6 +468,36 @@ fn agg_xcats_for_cid(cids: Vec<String>, xcats: Vec<String>) -> bool {
|
||||
xcats.len() > 1
|
||||
}
|
||||
|
||||
/// Represents a weight value that can be a string, (float, or integer).
|
||||
#[derive(Debug, Clone, PartialEq)]
|
||||
pub enum WeightValue {
|
||||
Str(String),
|
||||
F64(f64),
|
||||
}
|
||||
impl From<String> for WeightValue {
|
||||
fn from(s: String) -> Self {
|
||||
WeightValue::Str(s)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> From<&'a str> for WeightValue {
|
||||
fn from(s: &'a str) -> Self {
|
||||
WeightValue::Str(s.to_string())
|
||||
}
|
||||
}
|
||||
|
||||
impl From<f64> for WeightValue {
|
||||
fn from(f: f64) -> Self {
|
||||
WeightValue::F64(f)
|
||||
}
|
||||
}
|
||||
|
||||
impl From<i32> for WeightValue {
|
||||
fn from(i: i32) -> Self {
|
||||
WeightValue::F64(i as f64)
|
||||
}
|
||||
}
|
||||
|
||||
/// Weighted linear combinations of cross sections or categories
|
||||
/// # Arguments
|
||||
/// * `df` - QDF DataFrame
|
||||
@@ -417,7 +522,7 @@ pub fn linear_composite(
|
||||
cids: Vec<String>,
|
||||
weights: Option<Vec<f64>>,
|
||||
signs: Option<Vec<f64>>,
|
||||
weight_xcats: Option<Vec<String>>,
|
||||
weight_xcat: Option<String>,
|
||||
normalize_weights: bool,
|
||||
start: Option<String>,
|
||||
end: Option<String>,
|
||||
@@ -429,10 +534,28 @@ pub fn linear_composite(
|
||||
) -> Result<DataFrame, Box<dyn std::error::Error>> {
|
||||
// Check if the DataFrame is a Quantamental DataFrame
|
||||
check_quantamental_dataframe(df)?;
|
||||
|
||||
if agg_xcats_for_cid(cids.clone(), xcats.clone()) {
|
||||
if weight_xcat.is_some() {
|
||||
return Err(
|
||||
format!(
|
||||
"Using xcats as weights is not supported when aggregating cids for a single xcat. {:?} {:?}",
|
||||
cids, xcats
|
||||
)
|
||||
.into(),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
let mut rxcats = xcats.clone();
|
||||
if weight_xcat.is_some() {
|
||||
rxcats.extend(vec![weight_xcat.clone().unwrap()]);
|
||||
}
|
||||
|
||||
let rdf = reduce_dataframe(
|
||||
df.clone(),
|
||||
Some(cids.clone()),
|
||||
Some(xcats.clone()),
|
||||
Some(rxcats.clone()),
|
||||
Some(vec!["value".to_string()]),
|
||||
start.clone(),
|
||||
end.clone(),
|
||||
@@ -443,10 +566,11 @@ pub fn linear_composite(
|
||||
let new_xcat = new_xcat.unwrap_or_else(|| "COMPOSITE".to_string());
|
||||
let new_cid = new_cid.unwrap_or_else(|| "GLB".to_string());
|
||||
|
||||
let dfw = pivot_dataframe_by_ticker(rdf.clone(), Some("value".to_string())).unwrap();
|
||||
let dfw = pivot_dataframe_by_ticker(rdf, Some("value".to_string())).unwrap();
|
||||
|
||||
let mul_targets = get_mul_targets(cids.clone(), xcats.clone())?;
|
||||
let weights_map = form_weights_and_signs_map(cids.clone(), xcats.clone(), weights, signs)?;
|
||||
let weights_map =
|
||||
form_weights_and_signs_map(cids.clone(), xcats.clone(), weights, weight_xcat, signs)?;
|
||||
|
||||
for (ticker, targets) in mul_targets.iter() {
|
||||
println!("ticker: {}, targets: {:?}", ticker, targets);
|
||||
|
||||
373
src/utils/qdf/blacklist.rs
Normal file
373
src/utils/qdf/blacklist.rs
Normal file
@@ -0,0 +1,373 @@
|
||||
use crate::utils::bdates::{get_bdates_list_with_freq, BDateFreq};
|
||||
use crate::utils::dateutils::get_min_max_real_dates;
|
||||
use crate::utils::misc::get_cid;
|
||||
use crate::utils::qdf::core::check_quantamental_dataframe;
|
||||
use chrono::NaiveDate;
|
||||
use polars::prelude::*;
|
||||
use std::collections::{BTreeMap, HashMap};
|
||||
use std::error::Error;
|
||||
|
||||
use crate::utils::qdf::get_unique_metrics;
|
||||
|
||||
// struct Blacklist which is a wrapper around hashmap and btreemap
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Blacklist {
|
||||
pub blacklist: BTreeMap<String, (String, String)>,
|
||||
}
|
||||
|
||||
// impl hashmap into
|
||||
impl Blacklist {
|
||||
pub fn into_hashmap(self) -> HashMap<String, (String, String)> {
|
||||
self.blacklist.into_iter().collect()
|
||||
}
|
||||
}
|
||||
|
||||
/// Apply a blacklist to a Quantamental DataFrame.
|
||||
///
|
||||
/// * `blacklist` is a map from any “ticker‑like” key to a tuple of
|
||||
/// `(start_date, end_date)` in **inclusive** `"YYYY‑MM‑DD"` format.
|
||||
/// * `metrics` – if `None`, every metric from `get_unique_metrics(df)`
|
||||
/// is used.
|
||||
/// * `group_by_cid = Some(false)` is not implemented yet.
|
||||
pub fn apply_blacklist(
|
||||
df: &mut DataFrame,
|
||||
blacklist: &BTreeMap<String, (String, String)>,
|
||||
metrics: Option<Vec<String>>,
|
||||
group_by_cid: Option<bool>,
|
||||
) -> Result<DataFrame, Box<dyn std::error::Error>> {
|
||||
check_quantamental_dataframe(df)?;
|
||||
// dataframe is like:
|
||||
// | cid | xcat | real_date | metric1 | metric2 |
|
||||
// |-----|------|-----------|---------|---------|
|
||||
// | A | B | 2023-01-01| 1.0 | 2.0 |
|
||||
// | A | B | 2023-01-02| 1.0 | 2.0 |
|
||||
// | A | C | 2023-01-01| 1.0 | 2.0 |
|
||||
// | A | C | 2023-01-02| 1.0 | 2.0 |
|
||||
// | D | E | 2023-01-01| 1.0 | 2.0 |
|
||||
// | D | E | 2023-01-02| 1.0 | 2.0 |
|
||||
|
||||
// (real date column is Naive date)
|
||||
|
||||
// blacklist is like:
|
||||
// {'A_B_1': ('2023-01-02', '2023-01-03'),
|
||||
// 'A_B_2': ('2023-01-04', '2023-01-05'),
|
||||
// 'A_C_1': ('2023-01-02', '2023-01-03'), }
|
||||
|
||||
// get_cid('A_B_1') = 'A'
|
||||
// get_cid('A_B_2') = 'A'
|
||||
// get_cid('D_E_1') = 'D'
|
||||
|
||||
Ok(df.clone())
|
||||
}
|
||||
/// Create a blacklist from a Quantamental DataFrame.
|
||||
/// The blacklist is a mapping of tickers to date ranges where the specified metrics are null or NaN.
|
||||
/// # Arguments:
|
||||
/// * `df` - The Quantamental DataFrame.
|
||||
/// * `group_by_cid` - If true, group the blacklist by `cid`. Defaults to true.
|
||||
/// * `blacklist_name` - The name of the blacklist. Defaults to "BLACKLIST".
|
||||
/// * `metrics` - The metrics to check for null or NaN values. If None, all metrics are used.
|
||||
pub fn create_blacklist_from_qdf(
|
||||
df: &DataFrame,
|
||||
group_by_cid: Option<bool>,
|
||||
blacklist_name: Option<String>,
|
||||
metrics: Option<Vec<String>>,
|
||||
) -> Result<BTreeMap<String, (String, String)>, Box<dyn Error>> {
|
||||
check_quantamental_dataframe(df)?;
|
||||
let metrics = metrics.unwrap_or_else(|| get_unique_metrics(df).unwrap());
|
||||
let blacklist_name = blacklist_name.unwrap_or_else(|| "BLACKLIST".into());
|
||||
let group_by_cid = group_by_cid.unwrap_or(true);
|
||||
|
||||
let (min_date, max_date) = get_min_max_real_dates(df, "real_date".into())?;
|
||||
let min_date_str = min_date.format("%Y-%m-%d").to_string();
|
||||
let max_date_str = max_date.format("%Y-%m-%d").to_string();
|
||||
// let all_bdates = get_bdates_series_default_opt(min_date_str, max_date_str, None)?;
|
||||
let all_bdates = get_bdates_list_with_freq(
|
||||
min_date_str.clone().as_str(),
|
||||
max_date_str.clone().as_str(),
|
||||
BDateFreq::Daily,
|
||||
)?;
|
||||
|
||||
// if none of the metrics are null or NaN, return an empty blacklist
|
||||
if !metrics.iter().any(|metric| {
|
||||
df.column(metric)
|
||||
.map(|col| col.is_null().any())
|
||||
.unwrap_or(false)
|
||||
}) {
|
||||
return Ok(BTreeMap::new());
|
||||
}
|
||||
|
||||
// let null_mask = get_nan_mask(df, metrics)?;
|
||||
// let df = df.filter(&null_mask)?.clone();
|
||||
|
||||
let df = df
|
||||
.clone()
|
||||
.lazy()
|
||||
.with_columns([
|
||||
(cols(metrics.clone()).is_null().or(cols(metrics).is_nan())).alias("null_mask")
|
||||
])
|
||||
.filter(col("null_mask"))
|
||||
// if is now empty, return an empty blacklist
|
||||
.sort(
|
||||
["cid", "xcat"],
|
||||
SortMultipleOptions::default().with_maintain_order(true),
|
||||
)
|
||||
.group_by([col("cid"), col("xcat")])
|
||||
// .agg([col("real_date").sort(SortOptions::default())])
|
||||
.agg([col("real_date")
|
||||
.dt()
|
||||
.strftime("%Y-%m-%d")
|
||||
.sort(SortOptions::default())])
|
||||
.select([
|
||||
concat_str([col("cid"), col("xcat")], "_", true).alias("ticker"),
|
||||
col("real_date").alias("real_dates"),
|
||||
])
|
||||
.collect()?;
|
||||
|
||||
// assert!(0 == 1, "{:?}", df);
|
||||
|
||||
let ticker_vec = df
|
||||
.column("ticker")?
|
||||
.str()?
|
||||
.into_iter()
|
||||
.filter_map(|opt| opt.map(|s| s.to_string()))
|
||||
.collect::<Vec<String>>();
|
||||
|
||||
let rdt = get_vec_of_vec_of_dates_from_df(df)?;
|
||||
|
||||
let mut blk: HashMap<String, Vec<String>> = HashMap::new();
|
||||
for (tkr, dates) in ticker_vec.iter().zip(rdt.iter()) {
|
||||
if group_by_cid {
|
||||
let _cid = get_cid(tkr.clone())?;
|
||||
if blk.contains_key(&_cid) {
|
||||
blk.get_mut(&_cid).unwrap().extend(dates.iter().cloned());
|
||||
} else {
|
||||
blk.insert(_cid, dates.clone());
|
||||
}
|
||||
} else {
|
||||
blk.insert(tkr.to_string(), dates.clone());
|
||||
}
|
||||
}
|
||||
for (_key, vals) in blk.iter_mut() {
|
||||
// order is important - dedup depends on the vec being sorted
|
||||
vals.sort();
|
||||
vals.dedup();
|
||||
}
|
||||
|
||||
let all_bdates_strs = all_bdates
|
||||
.iter()
|
||||
.map(|date| date.format("%Y-%m-%d").to_string())
|
||||
.collect::<Vec<String>>();
|
||||
|
||||
let mut blacklist: HashMap<String, (String, String)> = HashMap::new();
|
||||
for (tkr, dates) in blk.iter() {
|
||||
let date_ranges = convert_dates_list_to_date_ranges(dates.clone(), all_bdates_strs.clone());
|
||||
for (rng_idx, (start_date, end_date)) in date_ranges.iter() {
|
||||
let range_key = format!("{}_{}_{}", tkr, blacklist_name.clone(), rng_idx);
|
||||
blacklist.insert(range_key, (start_date.clone(), end_date.clone()));
|
||||
}
|
||||
}
|
||||
// Ok(blacklist)
|
||||
|
||||
let mut btree_map: BTreeMap<String, (String, String)> = BTreeMap::new();
|
||||
for (key, (start_date, end_date)) in blacklist.iter() {
|
||||
btree_map.insert(key.clone(), (start_date.clone(), end_date.clone()));
|
||||
}
|
||||
|
||||
Ok(btree_map)
|
||||
}
|
||||
|
||||
/// Get a mask of NaN values for the specified metrics in the DataFrame.
|
||||
#[allow(dead_code)]
|
||||
fn get_nan_mask(
|
||||
df: &DataFrame,
|
||||
metrics: Vec<String>,
|
||||
) -> Result<ChunkedArray<BooleanType>, Box<dyn Error>> {
|
||||
let null_masks: Vec<ChunkedArray<BooleanType>> = metrics
|
||||
.iter()
|
||||
.map(|metric| {
|
||||
let null_mask = df.column(metric.as_str())?.is_null();
|
||||
let nan_mask = df.column(metric.as_str())?.is_nan()?;
|
||||
Ok(null_mask | nan_mask)
|
||||
})
|
||||
.collect::<Result<_, Box<dyn Error>>>()?;
|
||||
let null_mask = null_masks
|
||||
.into_iter()
|
||||
.reduce(|acc, mask| acc | mask)
|
||||
.unwrap_or_else(|| BooleanChunked::full_null("null_mask".into(), df.height()));
|
||||
Ok(null_mask)
|
||||
}
|
||||
|
||||
fn convert_dates_list_to_date_ranges(
|
||||
blacklist: Vec<String>,
|
||||
all_bdates_strs: Vec<String>,
|
||||
) -> HashMap<String, (String, String)> {
|
||||
// Step 1: Map every date in all_bdates_strs to its index
|
||||
let mut all_map: HashMap<String, usize> = HashMap::new();
|
||||
for (i, d) in all_bdates_strs.iter().enumerate() {
|
||||
all_map.insert(d.clone(), i);
|
||||
}
|
||||
|
||||
// Step 2: Convert each blacklisted date into its index, if it exists
|
||||
let mut blacklisted_indices: Vec<usize> = Vec::new();
|
||||
for dt in blacklist {
|
||||
if let Some(&idx) = all_map.get(&dt) {
|
||||
blacklisted_indices.push(idx);
|
||||
}
|
||||
}
|
||||
|
||||
// Step 3: Sort the blacklisted indices
|
||||
blacklisted_indices.sort_unstable();
|
||||
|
||||
// Step 4: Traverse and group consecutive indices into ranges
|
||||
let mut result: HashMap<i64, (String, String)> = HashMap::new();
|
||||
let mut string_result: HashMap<String, (String, String)> = HashMap::new();
|
||||
|
||||
if blacklisted_indices.is_empty() {
|
||||
return string_result;
|
||||
}
|
||||
|
||||
let mut range_idx: i64 = 0;
|
||||
let mut start_idx = blacklisted_indices[0];
|
||||
let mut end_idx = start_idx;
|
||||
|
||||
for &cur_idx in blacklisted_indices.iter().skip(1) {
|
||||
if cur_idx == end_idx + 1 {
|
||||
// We are still in a contiguous run
|
||||
end_idx = cur_idx;
|
||||
} else {
|
||||
// We hit a break in contiguity, so store the last range
|
||||
result.insert(
|
||||
range_idx,
|
||||
(
|
||||
all_bdates_strs[start_idx].clone(),
|
||||
all_bdates_strs[end_idx].clone(),
|
||||
),
|
||||
);
|
||||
range_idx += 1;
|
||||
|
||||
// Start a new range
|
||||
start_idx = cur_idx;
|
||||
end_idx = cur_idx;
|
||||
}
|
||||
}
|
||||
|
||||
// Don't forget to store the final range after the loop
|
||||
result.insert(
|
||||
range_idx,
|
||||
(
|
||||
all_bdates_strs[start_idx].clone(),
|
||||
all_bdates_strs[end_idx].clone(),
|
||||
),
|
||||
);
|
||||
|
||||
let max_digits = result.keys().max().unwrap_or(&-1).to_string().len();
|
||||
for (key, (start_date, end_date)) in result.iter() {
|
||||
let new_key = format!("{:0width$}", key, width = max_digits);
|
||||
string_result.insert(new_key, (start_date.clone(), end_date.clone()));
|
||||
}
|
||||
|
||||
string_result
|
||||
}
|
||||
|
||||
fn get_vec_of_vec_of_dates_from_df(df: DataFrame) -> Result<Vec<Vec<String>>, Box<dyn Error>> {
|
||||
let rdt = df
|
||||
.column("real_dates")?
|
||||
// .clone()
|
||||
.as_series()
|
||||
.unwrap()
|
||||
.list()?
|
||||
.into_iter()
|
||||
.filter_map(|opt| opt)
|
||||
.collect::<Vec<Series>>()
|
||||
.iter()
|
||||
.map(|s| {
|
||||
s.str()
|
||||
.unwrap()
|
||||
.into_iter()
|
||||
.filter_map(|opt| opt.map(|s| s.to_string()))
|
||||
.collect::<Vec<String>>()
|
||||
})
|
||||
.collect::<Vec<Vec<String>>>();
|
||||
Ok(rdt)
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
fn get_vec_of_vec_of_naivedates_from_df(
|
||||
df: DataFrame,
|
||||
) -> Result<Vec<Vec<NaiveDate>>, Box<dyn Error>> {
|
||||
let rdt = df
|
||||
.column("real_dates")?
|
||||
// .clone()
|
||||
.as_series()
|
||||
.unwrap()
|
||||
.list()?
|
||||
.into_iter()
|
||||
.filter_map(|opt| opt)
|
||||
.collect::<Vec<Series>>()
|
||||
.iter()
|
||||
.map(|s| {
|
||||
s.date()
|
||||
.unwrap()
|
||||
.into_iter()
|
||||
.filter_map(|opt| opt.and_then(|date| NaiveDate::from_num_days_from_ce_opt(date)))
|
||||
.collect::<Vec<NaiveDate>>()
|
||||
})
|
||||
.collect::<Vec<Vec<NaiveDate>>>();
|
||||
Ok(rdt)
|
||||
}
|
||||
|
||||
// fn get_vec_of_vec_of_dates_from_df(df: DataFrame) -> Result<Vec<Vec<String>>, Box<dyn Error>> {
|
||||
// let real_dates_column = df.column("real_dates")?.clone();
|
||||
// let series = real_dates_column.as_series().unwrap().clone();
|
||||
// let rdt = series.list()?.clone();
|
||||
// let rdt = rdt
|
||||
// .into_iter()
|
||||
// .filter_map(|opt| opt)
|
||||
// .collect::<Vec<Series>>();
|
||||
// let rdt = rdt
|
||||
// .iter()
|
||||
// .map(|s| {
|
||||
// s.str()
|
||||
// .unwrap()
|
||||
// .into_iter()
|
||||
// .filter_map(|opt| opt.map(|s| s.to_string()))
|
||||
// .collect::<Vec<String>>()
|
||||
// })
|
||||
// .collect::<Vec<Vec<String>>>();
|
||||
// Ok(rdt)
|
||||
// }
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_convert_dates_list_to_date_ranges() {
|
||||
let all_dates = vec![
|
||||
"2023-01-01".to_string(),
|
||||
"2023-01-02".to_string(),
|
||||
"2023-01-03".to_string(),
|
||||
"2023-01-04".to_string(),
|
||||
"2023-01-05".to_string(),
|
||||
"2023-01-06".to_string(),
|
||||
];
|
||||
let blacklist = vec![
|
||||
"2023-01-02".to_string(),
|
||||
"2023-01-03".to_string(),
|
||||
"2023-01-05".to_string(),
|
||||
];
|
||||
|
||||
let result = convert_dates_list_to_date_ranges(blacklist, all_dates);
|
||||
// Expect two ranges:
|
||||
// range 0 => ("2023-01-02", "2023-01-03")
|
||||
// range 1 => ("2023-01-05", "2023-01-05")
|
||||
assert_eq!(
|
||||
result["0"],
|
||||
("2023-01-02".to_string(), "2023-01-03".to_string())
|
||||
);
|
||||
assert_eq!(
|
||||
result["1"],
|
||||
("2023-01-05".to_string(), "2023-01-05".to_string())
|
||||
);
|
||||
}
|
||||
}
|
||||
@@ -17,14 +17,15 @@ use std::error::Error;
|
||||
pub fn check_quantamental_dataframe(df: &DataFrame) -> Result<(), Box<dyn Error>> {
|
||||
let expected_cols = ["real_date", "cid", "xcat"];
|
||||
let expected_dtype = [DataType::Date, DataType::String, DataType::String];
|
||||
let err = "Quantamental DataFrame must have at least 4 columns: 'real_date', 'cid', 'xcat' and one or more metrics.";
|
||||
for (col, dtype) in expected_cols.iter().zip(expected_dtype.iter()) {
|
||||
let col = df.column(col);
|
||||
if col.is_err() {
|
||||
return Err(format!("Column {:?} not found", col).into());
|
||||
return Err(format!("{} Column {:?} not found", err, col).into());
|
||||
}
|
||||
let col = col?;
|
||||
if col.dtype() != dtype {
|
||||
return Err(format!("Column {:?} has wrong dtype", col).into());
|
||||
return Err(format!("{} Column {:?} has wrong dtype", err, col).into());
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
|
||||
@@ -1,11 +1,12 @@
|
||||
pub mod blacklist;
|
||||
pub mod core;
|
||||
pub mod update_df;
|
||||
pub mod load;
|
||||
pub mod reduce_df;
|
||||
pub mod pivots;
|
||||
pub mod reduce_df;
|
||||
pub mod update_df;
|
||||
|
||||
// Re-export submodules for easier access
|
||||
pub use core::*;
|
||||
pub use update_df::*;
|
||||
pub use load::*;
|
||||
pub use reduce_df::*;
|
||||
pub use update_df::*;
|
||||
@@ -30,12 +30,12 @@ pub fn reduce_dataframe(
|
||||
let df_size = df.shape();
|
||||
let mut new_df = df.clone();
|
||||
|
||||
let ticker_col: Column = get_ticker_column_for_quantamental_dataframe(&new_df)?;
|
||||
let ticker_col = get_ticker_column_for_quantamental_dataframe(&new_df)?;
|
||||
|
||||
// if cids is not provided, get all unique cids
|
||||
let u_cids: Vec<String> = get_unique_cids(&new_df)?;
|
||||
let u_xcats: Vec<String> = get_unique_xcats(&new_df)?;
|
||||
let u_tickers: Vec<String> = _get_unique_strs_from_str_column_object(&ticker_col)?;
|
||||
let u_cids = get_unique_cids(&new_df)?;
|
||||
let u_xcats = get_unique_xcats(&new_df)?;
|
||||
let u_tickers = _get_unique_strs_from_str_column_object(&ticker_col)?;
|
||||
|
||||
let cids_vec = cids.unwrap_or_else(|| u_cids.clone());
|
||||
let specified_cids: Vec<&str> = cids_vec.iter().map(AsRef::as_ref).collect();
|
||||
|
||||
Reference in New Issue
Block a user