mirror of
https://github.com/Magnus167/msyrs.git
synced 2025-11-19 15:56:10 +00:00
Compare commits
17 Commits
5ef2c7e6c7
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
1275e7c2c9 | ||
|
|
0e4d58a9d8 | ||
|
|
d16764944b | ||
|
|
80603aa951 | ||
|
|
fb2efa99ac | ||
|
|
178de83d1a | ||
|
|
ee531deb7a | ||
|
|
0443906cc9 | ||
|
|
f0a9242d10 | ||
|
|
df22667d63 | ||
|
|
7d4c198067 | ||
|
|
25192e425d | ||
|
|
e602b8b2b4 | ||
|
|
5d2ff3b88d | ||
|
|
3d2afa01a8 | ||
|
|
ed9d5d01a2 | ||
|
|
dda6e3e12f |
1
.gitattributes
vendored
Normal file
1
.gitattributes
vendored
Normal file
@@ -0,0 +1 @@
|
|||||||
|
notebooks/** linguist-vendored
|
||||||
240
notebooks/funcwise/basic-utils.ipynb
vendored
240
notebooks/funcwise/basic-utils.ipynb
vendored
File diff suppressed because one or more lines are too long
33
scripts/unix/build.sh
Normal file
33
scripts/unix/build.sh
Normal file
@@ -0,0 +1,33 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# Exit immediately if a command exits with a non-zero status
|
||||||
|
set -e
|
||||||
|
|
||||||
|
# Run "maturin --help". If it fails, print an error message and exit.
|
||||||
|
if ! maturin --help > /dev/null 2>&1; then
|
||||||
|
echo "Failed to run maturin --help" >&2
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
# Delete any existing build directory and create a new one.
|
||||||
|
rm -rf ./build
|
||||||
|
mkdir -p ./build
|
||||||
|
|
||||||
|
# Copy ./src/msyrs.pyi to ./msyrs.pyi.
|
||||||
|
cp ./src/msyrs.pyi ./msyrs.pyi
|
||||||
|
|
||||||
|
# Build using maturin.
|
||||||
|
maturin build --release --sdist --out ./build/
|
||||||
|
|
||||||
|
# Get the first wheel file found in the build directory.
|
||||||
|
whl_file=$(ls ./build/*.whl 2>/dev/null | head -n 1)
|
||||||
|
if [ -z "$whl_file" ]; then
|
||||||
|
echo "No wheel file found in ./build" >&2
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
# Rename the wheel file from .whl to .zip.
|
||||||
|
base_name="${whl_file%.whl}"
|
||||||
|
mv "$whl_file" "${base_name}.zip"
|
||||||
|
|
||||||
|
# Delete the temporary .pyi file.
|
||||||
|
rm ./msyrs.pyi
|
||||||
20
scripts/unix/install.sh
Normal file
20
scripts/unix/install.sh
Normal file
@@ -0,0 +1,20 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
set -e
|
||||||
|
|
||||||
|
# Ensure maturin is installed. For example, you can install it via:
|
||||||
|
# pip install maturin
|
||||||
|
|
||||||
|
# Run "maturin --help". If it fails, print an error message and exit.
|
||||||
|
if ! maturin --help > /dev/null 2>&1; then
|
||||||
|
echo "Failed to run maturin --help" >&2
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
# Copy ./src/msyrs.pyi to the current directory as msyrs.pyi
|
||||||
|
cp ./src/msyrs.pyi ./msyrs.pyi
|
||||||
|
|
||||||
|
# Run maturin develop in release mode.
|
||||||
|
maturin develop --release
|
||||||
|
|
||||||
|
# Delete the temporary msyrs.pyi file.
|
||||||
|
rm ./msyrs.pyi
|
||||||
@@ -1,4 +1,4 @@
|
|||||||
use pyo3::prelude::*;
|
use pyo3::{prelude::*, types::PyDict};
|
||||||
use pyo3_polars::{PyDataFrame, PySeries};
|
use pyo3_polars::{PyDataFrame, PySeries};
|
||||||
|
|
||||||
/// Python wrapper for [`crate::utils::qdf`] module.
|
/// Python wrapper for [`crate::utils::qdf`] module.
|
||||||
@@ -7,6 +7,7 @@ use pyo3_polars::{PyDataFrame, PySeries};
|
|||||||
pub fn utils(_py: Python, m: &PyModule) -> PyResult<()> {
|
pub fn utils(_py: Python, m: &PyModule) -> PyResult<()> {
|
||||||
m.add_function(wrap_pyfunction!(get_bdates_series_default_pl, m)?)?;
|
m.add_function(wrap_pyfunction!(get_bdates_series_default_pl, m)?)?;
|
||||||
m.add_function(wrap_pyfunction!(get_bdates_series_default_opt, m)?)?;
|
m.add_function(wrap_pyfunction!(get_bdates_series_default_opt, m)?)?;
|
||||||
|
m.add_function(wrap_pyfunction!(create_blacklist_from_qdf, m)?)?;
|
||||||
Ok(())
|
Ok(())
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -33,3 +34,29 @@ pub fn get_bdates_series_default_opt(
|
|||||||
.map_err(|e| PyErr::new::<pyo3::exceptions::PyValueError, _>(format!("{}", e)))?,
|
.map_err(|e| PyErr::new::<pyo3::exceptions::PyValueError, _>(format!("{}", e)))?,
|
||||||
))
|
))
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[allow(deprecated)]
|
||||||
|
#[pyfunction(signature = (df, group_by_cid=None, blacklist_name=None, metrics=None))]
|
||||||
|
pub fn create_blacklist_from_qdf(
|
||||||
|
df: PyDataFrame,
|
||||||
|
group_by_cid: Option<bool>,
|
||||||
|
blacklist_name: Option<String>,
|
||||||
|
metrics: Option<Vec<String>>,
|
||||||
|
) -> PyResult<PyObject> {
|
||||||
|
let result = crate::utils::qdf::blacklist::create_blacklist_from_qdf(
|
||||||
|
&df.into(),
|
||||||
|
group_by_cid,
|
||||||
|
blacklist_name,
|
||||||
|
metrics,
|
||||||
|
)
|
||||||
|
.map_err(|e| PyErr::new::<pyo3::exceptions::PyValueError, _>(format!("{}", e)))?;
|
||||||
|
Python::with_gil(|py| {
|
||||||
|
let dict = PyDict::new(py);
|
||||||
|
// for (key, (start_date, end_date)) in result {
|
||||||
|
// dict.set_item(key, (start_date, end_date))
|
||||||
|
for (key, dates) in result {
|
||||||
|
dict.set_item(key, dates).map_err(|e| PyErr::from(e))?;
|
||||||
|
}
|
||||||
|
Ok(dict.into())
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|||||||
@@ -58,7 +58,7 @@ fn all_jpmaq_expressions(expressions: Vec<String>) -> bool {
|
|||||||
///
|
///
|
||||||
/// Example Usage:
|
/// Example Usage:
|
||||||
///
|
///
|
||||||
/// ```rust
|
/// ```ignore
|
||||||
/// use msyrs::download::jpmaqsdownload::JPMaQSDownloadGetIndicatorArgs;
|
/// use msyrs::download::jpmaqsdownload::JPMaQSDownloadGetIndicatorArgs;
|
||||||
/// use msyrs::download::jpmaqsdownload::JPMaQSDownload;
|
/// use msyrs::download::jpmaqsdownload::JPMaQSDownload;
|
||||||
///
|
///
|
||||||
@@ -102,7 +102,7 @@ impl Default for JPMaQSDownloadGetIndicatorArgs {
|
|||||||
/// Struct for downloading data from the JPMaQS data from JPMorgan DataQuery API.
|
/// Struct for downloading data from the JPMaQS data from JPMorgan DataQuery API.
|
||||||
///
|
///
|
||||||
/// ## Example Usage
|
/// ## Example Usage
|
||||||
/// ```rust
|
/// ```ignore
|
||||||
/// use msyrs::download::jpmaqsdownload::JPMaQSDownload;
|
/// use msyrs::download::jpmaqsdownload::JPMaQSDownload;
|
||||||
/// use msyrs::download::jpmaqsdownload::JPMaQSDownloadGetIndicatorArgs;
|
/// use msyrs::download::jpmaqsdownload::JPMaQSDownloadGetIndicatorArgs;
|
||||||
/// use polars::prelude::*;
|
/// use polars::prelude::*;
|
||||||
@@ -277,7 +277,7 @@ impl JPMaQSDownload {
|
|||||||
///
|
///
|
||||||
/// Usage:
|
/// Usage:
|
||||||
///
|
///
|
||||||
/// ```rust
|
/// ```ignore
|
||||||
/// use msyrs::download::jpmaqsdownload::JPMaQSDownload;
|
/// use msyrs::download::jpmaqsdownload::JPMaQSDownload;
|
||||||
/// use msyrs::download::jpmaqsdownload::JPMaQSDownloadGetIndicatorArgs;
|
/// use msyrs::download::jpmaqsdownload::JPMaQSDownloadGetIndicatorArgs;
|
||||||
/// let mut jpamqs_download = JPMaQSDownload::default();
|
/// let mut jpamqs_download = JPMaQSDownload::default();
|
||||||
|
|||||||
@@ -56,3 +56,5 @@ class utils:
|
|||||||
def get_bdates_series_default_pl(*args, **kwargs) -> Series: ...
|
def get_bdates_series_default_pl(*args, **kwargs) -> Series: ...
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def get_bdates_series_default_opt(*args, **kwargs) -> Series: ...
|
def get_bdates_series_default_opt(*args, **kwargs) -> Series: ...
|
||||||
|
@staticmethod
|
||||||
|
def create_blacklist_from_qdf(*args, **kwargs) -> dict: ...
|
||||||
@@ -1,27 +1,373 @@
|
|||||||
use crate::utils::dateutils::{get_bdates_series_default_opt, get_min_max_real_dates};
|
use crate::utils::bdates::{get_bdates_list_with_freq, BDateFreq};
|
||||||
use crate::utils::qdf::core::*;
|
use crate::utils::dateutils::get_min_max_real_dates;
|
||||||
use chrono::{Duration, NaiveDate};
|
use crate::utils::misc::get_cid;
|
||||||
|
use crate::utils::qdf::core::check_quantamental_dataframe;
|
||||||
|
use chrono::NaiveDate;
|
||||||
use polars::prelude::*;
|
use polars::prelude::*;
|
||||||
use std::collections::HashMap;
|
use std::collections::{BTreeMap, HashMap};
|
||||||
use std::error::Error;
|
use std::error::Error;
|
||||||
|
|
||||||
use super::pivots::pivot_dataframe_by_ticker;
|
use crate::utils::qdf::get_unique_metrics;
|
||||||
|
|
||||||
/// The required columns for a Quantamental DataFrame.
|
// struct Blacklist which is a wrapper around hashmap and btreemap
|
||||||
const QDF_INDEX_COLUMNS: [&str; 3] = ["real_date", "cid", "xcat"];
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct Blacklist {
|
||||||
|
pub blacklist: BTreeMap<String, (String, String)>,
|
||||||
|
}
|
||||||
|
|
||||||
|
// impl hashmap into
|
||||||
|
impl Blacklist {
|
||||||
|
pub fn into_hashmap(self) -> HashMap<String, (String, String)> {
|
||||||
|
self.blacklist.into_iter().collect()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Apply a blacklist to a Quantamental DataFrame.
|
||||||
|
///
|
||||||
|
/// * `blacklist` is a map from any “ticker‑like” key to a tuple of
|
||||||
|
/// `(start_date, end_date)` in **inclusive** `"YYYY‑MM‑DD"` format.
|
||||||
|
/// * `metrics` – if `None`, every metric from `get_unique_metrics(df)`
|
||||||
|
/// is used.
|
||||||
|
/// * `group_by_cid = Some(false)` is not implemented yet.
|
||||||
|
pub fn apply_blacklist(
|
||||||
|
df: &mut DataFrame,
|
||||||
|
blacklist: &BTreeMap<String, (String, String)>,
|
||||||
|
metrics: Option<Vec<String>>,
|
||||||
|
group_by_cid: Option<bool>,
|
||||||
|
) -> Result<DataFrame, Box<dyn std::error::Error>> {
|
||||||
|
check_quantamental_dataframe(df)?;
|
||||||
|
// dataframe is like:
|
||||||
|
// | cid | xcat | real_date | metric1 | metric2 |
|
||||||
|
// |-----|------|-----------|---------|---------|
|
||||||
|
// | A | B | 2023-01-01| 1.0 | 2.0 |
|
||||||
|
// | A | B | 2023-01-02| 1.0 | 2.0 |
|
||||||
|
// | A | C | 2023-01-01| 1.0 | 2.0 |
|
||||||
|
// | A | C | 2023-01-02| 1.0 | 2.0 |
|
||||||
|
// | D | E | 2023-01-01| 1.0 | 2.0 |
|
||||||
|
// | D | E | 2023-01-02| 1.0 | 2.0 |
|
||||||
|
|
||||||
|
// (real date column is Naive date)
|
||||||
|
|
||||||
|
// blacklist is like:
|
||||||
|
// {'A_B_1': ('2023-01-02', '2023-01-03'),
|
||||||
|
// 'A_B_2': ('2023-01-04', '2023-01-05'),
|
||||||
|
// 'A_C_1': ('2023-01-02', '2023-01-03'), }
|
||||||
|
|
||||||
|
// get_cid('A_B_1') = 'A'
|
||||||
|
// get_cid('A_B_2') = 'A'
|
||||||
|
// get_cid('D_E_1') = 'D'
|
||||||
|
|
||||||
|
Ok(df.clone())
|
||||||
|
}
|
||||||
|
/// Create a blacklist from a Quantamental DataFrame.
|
||||||
|
/// The blacklist is a mapping of tickers to date ranges where the specified metrics are null or NaN.
|
||||||
|
/// # Arguments:
|
||||||
|
/// * `df` - The Quantamental DataFrame.
|
||||||
|
/// * `group_by_cid` - If true, group the blacklist by `cid`. Defaults to true.
|
||||||
|
/// * `blacklist_name` - The name of the blacklist. Defaults to "BLACKLIST".
|
||||||
|
/// * `metrics` - The metrics to check for null or NaN values. If None, all metrics are used.
|
||||||
pub fn create_blacklist_from_qdf(
|
pub fn create_blacklist_from_qdf(
|
||||||
df: &DataFrame,
|
df: &DataFrame,
|
||||||
metric: Option<String>,
|
group_by_cid: Option<bool>,
|
||||||
start: Option<String>,
|
blacklist_name: Option<String>,
|
||||||
end: Option<String>,
|
metrics: Option<Vec<String>>,
|
||||||
) -> Result<HashMap<String, Vec<String>>, Box<dyn Error>> {
|
) -> Result<BTreeMap<String, (String, String)>, Box<dyn Error>> {
|
||||||
// Verify that the DataFrame follows the Quantamental structure.
|
|
||||||
check_quantamental_dataframe(df)?;
|
check_quantamental_dataframe(df)?;
|
||||||
let mut blacklist: HashMap<String, Vec<String>> = HashMap::new();
|
let metrics = metrics.unwrap_or_else(|| get_unique_metrics(df).unwrap());
|
||||||
|
let blacklist_name = blacklist_name.unwrap_or_else(|| "BLACKLIST".into());
|
||||||
|
let group_by_cid = group_by_cid.unwrap_or(true);
|
||||||
|
|
||||||
// Use the provided metric or default to "value".
|
let (min_date, max_date) = get_min_max_real_dates(df, "real_date".into())?;
|
||||||
let metric = metric.unwrap_or_else(|| "value".into());
|
let min_date_str = min_date.format("%Y-%m-%d").to_string();
|
||||||
|
let max_date_str = max_date.format("%Y-%m-%d").to_string();
|
||||||
|
// let all_bdates = get_bdates_series_default_opt(min_date_str, max_date_str, None)?;
|
||||||
|
let all_bdates = get_bdates_list_with_freq(
|
||||||
|
min_date_str.clone().as_str(),
|
||||||
|
max_date_str.clone().as_str(),
|
||||||
|
BDateFreq::Daily,
|
||||||
|
)?;
|
||||||
|
|
||||||
Ok(blacklist)
|
// if none of the metrics are null or NaN, return an empty blacklist
|
||||||
|
if !metrics.iter().any(|metric| {
|
||||||
|
df.column(metric)
|
||||||
|
.map(|col| col.is_null().any())
|
||||||
|
.unwrap_or(false)
|
||||||
|
}) {
|
||||||
|
return Ok(BTreeMap::new());
|
||||||
|
}
|
||||||
|
|
||||||
|
// let null_mask = get_nan_mask(df, metrics)?;
|
||||||
|
// let df = df.filter(&null_mask)?.clone();
|
||||||
|
|
||||||
|
let df = df
|
||||||
|
.clone()
|
||||||
|
.lazy()
|
||||||
|
.with_columns([
|
||||||
|
(cols(metrics.clone()).is_null().or(cols(metrics).is_nan())).alias("null_mask")
|
||||||
|
])
|
||||||
|
.filter(col("null_mask"))
|
||||||
|
// if is now empty, return an empty blacklist
|
||||||
|
.sort(
|
||||||
|
["cid", "xcat"],
|
||||||
|
SortMultipleOptions::default().with_maintain_order(true),
|
||||||
|
)
|
||||||
|
.group_by([col("cid"), col("xcat")])
|
||||||
|
// .agg([col("real_date").sort(SortOptions::default())])
|
||||||
|
.agg([col("real_date")
|
||||||
|
.dt()
|
||||||
|
.strftime("%Y-%m-%d")
|
||||||
|
.sort(SortOptions::default())])
|
||||||
|
.select([
|
||||||
|
concat_str([col("cid"), col("xcat")], "_", true).alias("ticker"),
|
||||||
|
col("real_date").alias("real_dates"),
|
||||||
|
])
|
||||||
|
.collect()?;
|
||||||
|
|
||||||
|
// assert!(0 == 1, "{:?}", df);
|
||||||
|
|
||||||
|
let ticker_vec = df
|
||||||
|
.column("ticker")?
|
||||||
|
.str()?
|
||||||
|
.into_iter()
|
||||||
|
.filter_map(|opt| opt.map(|s| s.to_string()))
|
||||||
|
.collect::<Vec<String>>();
|
||||||
|
|
||||||
|
let rdt = get_vec_of_vec_of_dates_from_df(df)?;
|
||||||
|
|
||||||
|
let mut blk: HashMap<String, Vec<String>> = HashMap::new();
|
||||||
|
for (tkr, dates) in ticker_vec.iter().zip(rdt.iter()) {
|
||||||
|
if group_by_cid {
|
||||||
|
let _cid = get_cid(tkr.clone())?;
|
||||||
|
if blk.contains_key(&_cid) {
|
||||||
|
blk.get_mut(&_cid).unwrap().extend(dates.iter().cloned());
|
||||||
|
} else {
|
||||||
|
blk.insert(_cid, dates.clone());
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
blk.insert(tkr.to_string(), dates.clone());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for (_key, vals) in blk.iter_mut() {
|
||||||
|
// order is important - dedup depends on the vec being sorted
|
||||||
|
vals.sort();
|
||||||
|
vals.dedup();
|
||||||
|
}
|
||||||
|
|
||||||
|
let all_bdates_strs = all_bdates
|
||||||
|
.iter()
|
||||||
|
.map(|date| date.format("%Y-%m-%d").to_string())
|
||||||
|
.collect::<Vec<String>>();
|
||||||
|
|
||||||
|
let mut blacklist: HashMap<String, (String, String)> = HashMap::new();
|
||||||
|
for (tkr, dates) in blk.iter() {
|
||||||
|
let date_ranges = convert_dates_list_to_date_ranges(dates.clone(), all_bdates_strs.clone());
|
||||||
|
for (rng_idx, (start_date, end_date)) in date_ranges.iter() {
|
||||||
|
let range_key = format!("{}_{}_{}", tkr, blacklist_name.clone(), rng_idx);
|
||||||
|
blacklist.insert(range_key, (start_date.clone(), end_date.clone()));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// Ok(blacklist)
|
||||||
|
|
||||||
|
let mut btree_map: BTreeMap<String, (String, String)> = BTreeMap::new();
|
||||||
|
for (key, (start_date, end_date)) in blacklist.iter() {
|
||||||
|
btree_map.insert(key.clone(), (start_date.clone(), end_date.clone()));
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(btree_map)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get a mask of NaN values for the specified metrics in the DataFrame.
|
||||||
|
#[allow(dead_code)]
|
||||||
|
fn get_nan_mask(
|
||||||
|
df: &DataFrame,
|
||||||
|
metrics: Vec<String>,
|
||||||
|
) -> Result<ChunkedArray<BooleanType>, Box<dyn Error>> {
|
||||||
|
let null_masks: Vec<ChunkedArray<BooleanType>> = metrics
|
||||||
|
.iter()
|
||||||
|
.map(|metric| {
|
||||||
|
let null_mask = df.column(metric.as_str())?.is_null();
|
||||||
|
let nan_mask = df.column(metric.as_str())?.is_nan()?;
|
||||||
|
Ok(null_mask | nan_mask)
|
||||||
|
})
|
||||||
|
.collect::<Result<_, Box<dyn Error>>>()?;
|
||||||
|
let null_mask = null_masks
|
||||||
|
.into_iter()
|
||||||
|
.reduce(|acc, mask| acc | mask)
|
||||||
|
.unwrap_or_else(|| BooleanChunked::full_null("null_mask".into(), df.height()));
|
||||||
|
Ok(null_mask)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn convert_dates_list_to_date_ranges(
|
||||||
|
blacklist: Vec<String>,
|
||||||
|
all_bdates_strs: Vec<String>,
|
||||||
|
) -> HashMap<String, (String, String)> {
|
||||||
|
// Step 1: Map every date in all_bdates_strs to its index
|
||||||
|
let mut all_map: HashMap<String, usize> = HashMap::new();
|
||||||
|
for (i, d) in all_bdates_strs.iter().enumerate() {
|
||||||
|
all_map.insert(d.clone(), i);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Step 2: Convert each blacklisted date into its index, if it exists
|
||||||
|
let mut blacklisted_indices: Vec<usize> = Vec::new();
|
||||||
|
for dt in blacklist {
|
||||||
|
if let Some(&idx) = all_map.get(&dt) {
|
||||||
|
blacklisted_indices.push(idx);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Step 3: Sort the blacklisted indices
|
||||||
|
blacklisted_indices.sort_unstable();
|
||||||
|
|
||||||
|
// Step 4: Traverse and group consecutive indices into ranges
|
||||||
|
let mut result: HashMap<i64, (String, String)> = HashMap::new();
|
||||||
|
let mut string_result: HashMap<String, (String, String)> = HashMap::new();
|
||||||
|
|
||||||
|
if blacklisted_indices.is_empty() {
|
||||||
|
return string_result;
|
||||||
|
}
|
||||||
|
|
||||||
|
let mut range_idx: i64 = 0;
|
||||||
|
let mut start_idx = blacklisted_indices[0];
|
||||||
|
let mut end_idx = start_idx;
|
||||||
|
|
||||||
|
for &cur_idx in blacklisted_indices.iter().skip(1) {
|
||||||
|
if cur_idx == end_idx + 1 {
|
||||||
|
// We are still in a contiguous run
|
||||||
|
end_idx = cur_idx;
|
||||||
|
} else {
|
||||||
|
// We hit a break in contiguity, so store the last range
|
||||||
|
result.insert(
|
||||||
|
range_idx,
|
||||||
|
(
|
||||||
|
all_bdates_strs[start_idx].clone(),
|
||||||
|
all_bdates_strs[end_idx].clone(),
|
||||||
|
),
|
||||||
|
);
|
||||||
|
range_idx += 1;
|
||||||
|
|
||||||
|
// Start a new range
|
||||||
|
start_idx = cur_idx;
|
||||||
|
end_idx = cur_idx;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Don't forget to store the final range after the loop
|
||||||
|
result.insert(
|
||||||
|
range_idx,
|
||||||
|
(
|
||||||
|
all_bdates_strs[start_idx].clone(),
|
||||||
|
all_bdates_strs[end_idx].clone(),
|
||||||
|
),
|
||||||
|
);
|
||||||
|
|
||||||
|
let max_digits = result.keys().max().unwrap_or(&-1).to_string().len();
|
||||||
|
for (key, (start_date, end_date)) in result.iter() {
|
||||||
|
let new_key = format!("{:0width$}", key, width = max_digits);
|
||||||
|
string_result.insert(new_key, (start_date.clone(), end_date.clone()));
|
||||||
|
}
|
||||||
|
|
||||||
|
string_result
|
||||||
|
}
|
||||||
|
|
||||||
|
fn get_vec_of_vec_of_dates_from_df(df: DataFrame) -> Result<Vec<Vec<String>>, Box<dyn Error>> {
|
||||||
|
let rdt = df
|
||||||
|
.column("real_dates")?
|
||||||
|
// .clone()
|
||||||
|
.as_series()
|
||||||
|
.unwrap()
|
||||||
|
.list()?
|
||||||
|
.into_iter()
|
||||||
|
.filter_map(|opt| opt)
|
||||||
|
.collect::<Vec<Series>>()
|
||||||
|
.iter()
|
||||||
|
.map(|s| {
|
||||||
|
s.str()
|
||||||
|
.unwrap()
|
||||||
|
.into_iter()
|
||||||
|
.filter_map(|opt| opt.map(|s| s.to_string()))
|
||||||
|
.collect::<Vec<String>>()
|
||||||
|
})
|
||||||
|
.collect::<Vec<Vec<String>>>();
|
||||||
|
Ok(rdt)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[allow(dead_code)]
|
||||||
|
fn get_vec_of_vec_of_naivedates_from_df(
|
||||||
|
df: DataFrame,
|
||||||
|
) -> Result<Vec<Vec<NaiveDate>>, Box<dyn Error>> {
|
||||||
|
let rdt = df
|
||||||
|
.column("real_dates")?
|
||||||
|
// .clone()
|
||||||
|
.as_series()
|
||||||
|
.unwrap()
|
||||||
|
.list()?
|
||||||
|
.into_iter()
|
||||||
|
.filter_map(|opt| opt)
|
||||||
|
.collect::<Vec<Series>>()
|
||||||
|
.iter()
|
||||||
|
.map(|s| {
|
||||||
|
s.date()
|
||||||
|
.unwrap()
|
||||||
|
.into_iter()
|
||||||
|
.filter_map(|opt| opt.and_then(|date| NaiveDate::from_num_days_from_ce_opt(date)))
|
||||||
|
.collect::<Vec<NaiveDate>>()
|
||||||
|
})
|
||||||
|
.collect::<Vec<Vec<NaiveDate>>>();
|
||||||
|
Ok(rdt)
|
||||||
|
}
|
||||||
|
|
||||||
|
// fn get_vec_of_vec_of_dates_from_df(df: DataFrame) -> Result<Vec<Vec<String>>, Box<dyn Error>> {
|
||||||
|
// let real_dates_column = df.column("real_dates")?.clone();
|
||||||
|
// let series = real_dates_column.as_series().unwrap().clone();
|
||||||
|
// let rdt = series.list()?.clone();
|
||||||
|
// let rdt = rdt
|
||||||
|
// .into_iter()
|
||||||
|
// .filter_map(|opt| opt)
|
||||||
|
// .collect::<Vec<Series>>();
|
||||||
|
// let rdt = rdt
|
||||||
|
// .iter()
|
||||||
|
// .map(|s| {
|
||||||
|
// s.str()
|
||||||
|
// .unwrap()
|
||||||
|
// .into_iter()
|
||||||
|
// .filter_map(|opt| opt.map(|s| s.to_string()))
|
||||||
|
// .collect::<Vec<String>>()
|
||||||
|
// })
|
||||||
|
// .collect::<Vec<Vec<String>>>();
|
||||||
|
// Ok(rdt)
|
||||||
|
// }
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_convert_dates_list_to_date_ranges() {
|
||||||
|
let all_dates = vec![
|
||||||
|
"2023-01-01".to_string(),
|
||||||
|
"2023-01-02".to_string(),
|
||||||
|
"2023-01-03".to_string(),
|
||||||
|
"2023-01-04".to_string(),
|
||||||
|
"2023-01-05".to_string(),
|
||||||
|
"2023-01-06".to_string(),
|
||||||
|
];
|
||||||
|
let blacklist = vec![
|
||||||
|
"2023-01-02".to_string(),
|
||||||
|
"2023-01-03".to_string(),
|
||||||
|
"2023-01-05".to_string(),
|
||||||
|
];
|
||||||
|
|
||||||
|
let result = convert_dates_list_to_date_ranges(blacklist, all_dates);
|
||||||
|
// Expect two ranges:
|
||||||
|
// range 0 => ("2023-01-02", "2023-01-03")
|
||||||
|
// range 1 => ("2023-01-05", "2023-01-05")
|
||||||
|
assert_eq!(
|
||||||
|
result["0"],
|
||||||
|
("2023-01-02".to_string(), "2023-01-03".to_string())
|
||||||
|
);
|
||||||
|
assert_eq!(
|
||||||
|
result["1"],
|
||||||
|
("2023-01-05".to_string(), "2023-01-05".to_string())
|
||||||
|
);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -17,14 +17,15 @@ use std::error::Error;
|
|||||||
pub fn check_quantamental_dataframe(df: &DataFrame) -> Result<(), Box<dyn Error>> {
|
pub fn check_quantamental_dataframe(df: &DataFrame) -> Result<(), Box<dyn Error>> {
|
||||||
let expected_cols = ["real_date", "cid", "xcat"];
|
let expected_cols = ["real_date", "cid", "xcat"];
|
||||||
let expected_dtype = [DataType::Date, DataType::String, DataType::String];
|
let expected_dtype = [DataType::Date, DataType::String, DataType::String];
|
||||||
|
let err = "Quantamental DataFrame must have at least 4 columns: 'real_date', 'cid', 'xcat' and one or more metrics.";
|
||||||
for (col, dtype) in expected_cols.iter().zip(expected_dtype.iter()) {
|
for (col, dtype) in expected_cols.iter().zip(expected_dtype.iter()) {
|
||||||
let col = df.column(col);
|
let col = df.column(col);
|
||||||
if col.is_err() {
|
if col.is_err() {
|
||||||
return Err(format!("Column {:?} not found", col).into());
|
return Err(format!("{} Column {:?} not found", err, col).into());
|
||||||
}
|
}
|
||||||
let col = col?;
|
let col = col?;
|
||||||
if col.dtype() != dtype {
|
if col.dtype() != dtype {
|
||||||
return Err(format!("Column {:?} has wrong dtype", col).into());
|
return Err(format!("{} Column {:?} has wrong dtype", err, col).into());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
Ok(())
|
Ok(())
|
||||||
|
|||||||
Reference in New Issue
Block a user