mirror of
https://github.com/Magnus167/msyrs.git
synced 2025-08-20 04:20:00 +00:00
python working with notebook!
This commit is contained in:
parent
09f74916e8
commit
bba5acd724
@ -31,8 +31,8 @@ futures = "0.3"
|
|||||||
# pyo3 = { version = "0.23.1", features = ["extension-module"] }
|
# pyo3 = { version = "0.23.1", features = ["extension-module"] }
|
||||||
# pyo3 = { version = "0.21.2", features = ["extension-module"] }
|
# pyo3 = { version = "0.21.2", features = ["extension-module"] }
|
||||||
# pyo3 = { version = "*", features = ["abi3-py38"] }
|
# pyo3 = { version = "*", features = ["abi3-py38"] }
|
||||||
pyo3 = { version = "*", features = ["extension-module"] }
|
pyo3 = { version = "*", features = ["extension-module", "abi3-py37"] }
|
||||||
pyo3-polars = { version = "0.18.0" }
|
pyo3-polars = { version = "*" }
|
||||||
polars = { version = "*", features = [
|
polars = { version = "*", features = [
|
||||||
"lazy",
|
"lazy",
|
||||||
"temporal",
|
"temporal",
|
||||||
@ -40,6 +40,7 @@ polars = { version = "*", features = [
|
|||||||
"json",
|
"json",
|
||||||
"parquet",
|
"parquet",
|
||||||
"dtype-datetime",
|
"dtype-datetime",
|
||||||
|
# "dtype-categorical",
|
||||||
"strings",
|
"strings",
|
||||||
"timezones",
|
"timezones",
|
||||||
"ndarray",
|
"ndarray",
|
||||||
|
31
README.md
31
README.md
@ -2,33 +2,30 @@
|
|||||||
|
|
||||||
A Rust implementation of the [Macrosynergy Python Package](https://github.com/macrosynergy/macrosynergy).
|
A Rust implementation of the [Macrosynergy Python Package](https://github.com/macrosynergy/macrosynergy).
|
||||||
|
|
||||||
## Running Notebook
|
## Build and install the Python package
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
cargo install evcxr_jupyter
|
python -m venv .venv
|
||||||
evcxr_jupyter --install
|
# source .venv/bin/activate
|
||||||
pip install jupyterlab
|
./.venv/Scripts/activate
|
||||||
jupyter lab
|
pip install maturin
|
||||||
|
maturin develop --release
|
||||||
```
|
```
|
||||||
|
|
||||||
Or try following this guide here: [DataCrayon - Setup Jupyter with Rust](https://datacrayon.com/data-analysis-with-rust-notebooks/setup-anaconda-jupyter-and-rust/)
|
|
||||||
|
|
||||||
## Status
|
## Status
|
||||||
|
|
||||||
- Download
|
- [x] Download
|
||||||
|
|
||||||
- [x] Get Catalogue
|
- [ ] Pending: Optimize thread pool
|
||||||
- [x] Get Generic DQ Time Series
|
|
||||||
- [x] Get JPMaQS Indicators as Polars DataFrame
|
|
||||||
- [ ] Save to disk functionality
|
|
||||||
- [x] Hacky iterative method
|
|
||||||
- [ ] Non-hacky way to save to disk
|
|
||||||
|
|
||||||
- Utils
|
- Utils
|
||||||
|
|
||||||
- [ ] Reduce DF
|
- [ ] QDF
|
||||||
- [ ] Apply Blacklist
|
- [x] Read QDF
|
||||||
- [ ] Update DF
|
- [x] Reduce DF
|
||||||
|
- [x] Update DF
|
||||||
|
- [ ] Get Blacklist
|
||||||
|
- [ ] Apply Blacklist
|
||||||
|
|
||||||
- Panel
|
- Panel
|
||||||
- [ ] Historic Volatility
|
- [ ] Historic Volatility
|
||||||
|
364
notebooks/python-notebook.ipynb
Normal file
364
notebooks/python-notebook.ipynb
Normal file
@ -0,0 +1,364 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Build and install the package\n",
|
||||||
|
"\n",
|
||||||
|
"```bash\n",
|
||||||
|
"python -m venv .venv\n",
|
||||||
|
"\n",
|
||||||
|
"# source .venv/bin/activate\n",
|
||||||
|
"./.venv/Scripts/activate\n",
|
||||||
|
"\n",
|
||||||
|
"pip install maturin\n",
|
||||||
|
"\n",
|
||||||
|
"maturin develop --release\n",
|
||||||
|
"```"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 1,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"e:\\Work\\ruzt\\msyrs\\.venv\\Lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
||||||
|
" from .autonotebook import tqdm as notebook_tqdm\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"import macrosynergy\n",
|
||||||
|
"import pandas as pd\n",
|
||||||
|
"import numpy as np\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 2,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import msyrs\n",
|
||||||
|
"import polars as pl"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 3,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"DATA_FOLDER_PATH = \"E:/Work/jpmaqs-data\""
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 4,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/html": [
|
||||||
|
"<div><style>\n",
|
||||||
|
".dataframe > thead > tr,\n",
|
||||||
|
".dataframe > tbody > tr {\n",
|
||||||
|
" text-align: right;\n",
|
||||||
|
" white-space: pre-wrap;\n",
|
||||||
|
"}\n",
|
||||||
|
"</style>\n",
|
||||||
|
"<small>shape: (5, 7)</small><table border=\"1\" class=\"dataframe\"><thead><tr><th>real_date</th><th>cid</th><th>xcat</th><th>value</th><th>grading</th><th>eop_lag</th><th>mop_lag</th></tr><tr><td>date</td><td>str</td><td>str</td><td>f64</td><td>f64</td><td>i64</td><td>i64</td></tr></thead><tbody><tr><td>2010-03-03</td><td>"USD"</td><td>"ADPEMPL_SA_P1M1ML1"</td><td>-0.173806</td><td>3.0</td><td>3</td><td>33</td></tr><tr><td>2010-03-04</td><td>"USD"</td><td>"ADPEMPL_SA_P1M1ML1"</td><td>-0.173806</td><td>3.0</td><td>4</td><td>34</td></tr><tr><td>2010-03-05</td><td>"USD"</td><td>"ADPEMPL_SA_P1M1ML1"</td><td>-0.173806</td><td>3.0</td><td>5</td><td>35</td></tr><tr><td>2010-03-08</td><td>"USD"</td><td>"ADPEMPL_SA_P1M1ML1"</td><td>-0.173806</td><td>3.0</td><td>8</td><td>38</td></tr><tr><td>2010-03-09</td><td>"USD"</td><td>"ADPEMPL_SA_P1M1ML1"</td><td>-0.173806</td><td>3.0</td><td>9</td><td>39</td></tr></tbody></table></div>"
|
||||||
|
],
|
||||||
|
"text/plain": [
|
||||||
|
"shape: (5, 7)\n",
|
||||||
|
"┌────────────┬─────┬────────────────────┬───────────┬─────────┬─────────┬─────────┐\n",
|
||||||
|
"│ real_date ┆ cid ┆ xcat ┆ value ┆ grading ┆ eop_lag ┆ mop_lag │\n",
|
||||||
|
"│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │\n",
|
||||||
|
"│ date ┆ str ┆ str ┆ f64 ┆ f64 ┆ i64 ┆ i64 │\n",
|
||||||
|
"╞════════════╪═════╪════════════════════╪═══════════╪═════════╪═════════╪═════════╡\n",
|
||||||
|
"│ 2010-03-03 ┆ USD ┆ ADPEMPL_SA_P1M1ML1 ┆ -0.173806 ┆ 3.0 ┆ 3 ┆ 33 │\n",
|
||||||
|
"│ 2010-03-04 ┆ USD ┆ ADPEMPL_SA_P1M1ML1 ┆ -0.173806 ┆ 3.0 ┆ 4 ┆ 34 │\n",
|
||||||
|
"│ 2010-03-05 ┆ USD ┆ ADPEMPL_SA_P1M1ML1 ┆ -0.173806 ┆ 3.0 ┆ 5 ┆ 35 │\n",
|
||||||
|
"│ 2010-03-08 ┆ USD ┆ ADPEMPL_SA_P1M1ML1 ┆ -0.173806 ┆ 3.0 ┆ 8 ┆ 38 │\n",
|
||||||
|
"│ 2010-03-09 ┆ USD ┆ ADPEMPL_SA_P1M1ML1 ┆ -0.173806 ┆ 3.0 ┆ 9 ┆ 39 │\n",
|
||||||
|
"└────────────┴─────┴────────────────────┴───────────┴─────────┴─────────┴─────────┘"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 4,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"dfpath = f\"{DATA_FOLDER_PATH}/data/ADPEMPL_SA_P1M1ML1/USD_ADPEMPL_SA_P1M1ML1.csv\"\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"ldf: pl.DataFrame = msyrs.qdf.load_qdf(dfpath)\n",
|
||||||
|
"ldf.head(5)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 5,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"cids_dm = \"AUD.CAD.CHF.EUR.GBP.JPY.NOK.NZD.SEK.USD\".split(\".\")\n",
|
||||||
|
"cids_em = \"CLP.COP.CZK.HUF.IDR.ILS.INR.KRW.MXN.PLN.THB.TRY.TWD.ZAR\".split(\".\")\n",
|
||||||
|
"cids = cids_dm + cids_em\n",
|
||||||
|
"cids_dux = list(set(cids) - set([\"IDR\", \"NZD\"]))\n",
|
||||||
|
"ecos = \"CPIC_SA_P1M1ML12.CPIC_SJA_P3M3ML3AR.CPIC_SJA_P6M6ML6AR.CPIH_SA_P1M1ML12.CPIH_SJA_P3M3ML3AR.CPIH_SJA_P6M6ML6AR.INFTEFF_NSA.INTRGDP_NSA_P1M1ML12_3MMA.INTRGDPv5Y_NSA_P1M1ML12_3MMA.PCREDITGDP_SJA_D1M1ML12.RGDP_SA_P1Q1QL4_20QMA.RYLDIRS02Y_NSA.RYLDIRS05Y_NSA.PCREDITBN_SJA_P1M1ML12\".split(\n",
|
||||||
|
" \".\"\n",
|
||||||
|
")\n",
|
||||||
|
"[\"CPIC\", \"CPIH\", \"INFTEFF\", \"INTRGDP\", \"INTRGDPv5Y\", \"PCREDITGDP\", \"RGDP\", \"RYLDIRS\", \"PCREDITBN\"]\n",
|
||||||
|
"[\"\"]\n",
|
||||||
|
"\n",
|
||||||
|
"mkts = \"DU02YXR_NSA.DU05YXR_NSA.DU02YXR_VT10.DU05YXR_VT10.EQXR_NSA.EQXR_VT10.FXXR_NSA.FXXR_VT10.FXCRR_NSA.FXTARGETED_NSA.FXUNTRADABLE_NSA\".split(\n",
|
||||||
|
" \".\"\n",
|
||||||
|
")\n",
|
||||||
|
"xcats = ecos + mkts\n",
|
||||||
|
"\n",
|
||||||
|
"tickers = [f\"{c}_{x}\" for c in cids for x in xcats]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 6,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/html": [
|
||||||
|
"<div><style>\n",
|
||||||
|
".dataframe > thead > tr,\n",
|
||||||
|
".dataframe > tbody > tr {\n",
|
||||||
|
" text-align: right;\n",
|
||||||
|
" white-space: pre-wrap;\n",
|
||||||
|
"}\n",
|
||||||
|
"</style>\n",
|
||||||
|
"<small>shape: (5, 7)</small><table border=\"1\" class=\"dataframe\"><thead><tr><th>real_date</th><th>cid</th><th>xcat</th><th>value</th><th>grading</th><th>eop_lag</th><th>mop_lag</th></tr><tr><td>date</td><td>str</td><td>str</td><td>f64</td><td>f64</td><td>i64</td><td>i64</td></tr></thead><tbody><tr><td>1990-04-26</td><td>"AUD"</td><td>"CPIC_SA_P1M1ML12"</td><td>6.434599</td><td>2.0</td><td>26</td><td>223</td></tr><tr><td>1990-04-27</td><td>"AUD"</td><td>"CPIC_SA_P1M1ML12"</td><td>6.434599</td><td>2.0</td><td>27</td><td>224</td></tr><tr><td>1990-04-30</td><td>"AUD"</td><td>"CPIC_SA_P1M1ML12"</td><td>6.434599</td><td>2.0</td><td>30</td><td>227</td></tr><tr><td>1990-05-01</td><td>"AUD"</td><td>"CPIC_SA_P1M1ML12"</td><td>6.434599</td><td>2.0</td><td>31</td><td>228</td></tr><tr><td>1990-05-02</td><td>"AUD"</td><td>"CPIC_SA_P1M1ML12"</td><td>6.434599</td><td>2.0</td><td>32</td><td>229</td></tr></tbody></table></div>"
|
||||||
|
],
|
||||||
|
"text/plain": [
|
||||||
|
"shape: (5, 7)\n",
|
||||||
|
"┌────────────┬─────┬──────────────────┬──────────┬─────────┬─────────┬─────────┐\n",
|
||||||
|
"│ real_date ┆ cid ┆ xcat ┆ value ┆ grading ┆ eop_lag ┆ mop_lag │\n",
|
||||||
|
"│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │\n",
|
||||||
|
"│ date ┆ str ┆ str ┆ f64 ┆ f64 ┆ i64 ┆ i64 │\n",
|
||||||
|
"╞════════════╪═════╪══════════════════╪══════════╪═════════╪═════════╪═════════╡\n",
|
||||||
|
"│ 1990-04-26 ┆ AUD ┆ CPIC_SA_P1M1ML12 ┆ 6.434599 ┆ 2.0 ┆ 26 ┆ 223 │\n",
|
||||||
|
"│ 1990-04-27 ┆ AUD ┆ CPIC_SA_P1M1ML12 ┆ 6.434599 ┆ 2.0 ┆ 27 ┆ 224 │\n",
|
||||||
|
"│ 1990-04-30 ┆ AUD ┆ CPIC_SA_P1M1ML12 ┆ 6.434599 ┆ 2.0 ┆ 30 ┆ 227 │\n",
|
||||||
|
"│ 1990-05-01 ┆ AUD ┆ CPIC_SA_P1M1ML12 ┆ 6.434599 ┆ 2.0 ┆ 31 ┆ 228 │\n",
|
||||||
|
"│ 1990-05-02 ┆ AUD ┆ CPIC_SA_P1M1ML12 ┆ 6.434599 ┆ 2.0 ┆ 32 ┆ 229 │\n",
|
||||||
|
"└────────────┴─────┴──────────────────┴──────────┴─────────┴─────────┴─────────┘"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 6,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"big_df: pl.DataFrame = msyrs.qdf.load_qdf_from_download_bank(\n",
|
||||||
|
" folder_path=DATA_FOLDER_PATH, tickers=tickers\n",
|
||||||
|
")\n",
|
||||||
|
"big_df.head(5)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 7,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"sel_cids = [\"USD\", \"EUR\", \"GBP\", \"AUD\", \"CAD\"]\n",
|
||||||
|
"start = \"2024-11-14\""
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 8,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/html": [
|
||||||
|
"<div><style>\n",
|
||||||
|
".dataframe > thead > tr,\n",
|
||||||
|
".dataframe > tbody > tr {\n",
|
||||||
|
" text-align: right;\n",
|
||||||
|
" white-space: pre-wrap;\n",
|
||||||
|
"}\n",
|
||||||
|
"</style>\n",
|
||||||
|
"<small>shape: (20, 7)</small><table border=\"1\" class=\"dataframe\"><thead><tr><th>real_date</th><th>cid</th><th>xcat</th><th>value</th><th>grading</th><th>eop_lag</th><th>mop_lag</th></tr><tr><td>date</td><td>str</td><td>str</td><td>f64</td><td>f64</td><td>i64</td><td>i64</td></tr></thead><tbody><tr><td>2024-11-14</td><td>"AUD"</td><td>"EQXR_NSA"</td><td>0.329188</td><td>1.0</td><td>0</td><td>0</td></tr><tr><td>2024-11-15</td><td>"AUD"</td><td>"EQXR_NSA"</td><td>0.826346</td><td>1.0</td><td>0</td><td>0</td></tr><tr><td>2024-11-14</td><td>"CAD"</td><td>"EQXR_NSA"</td><td>0.199402</td><td>1.0</td><td>0</td><td>0</td></tr><tr><td>2024-11-15</td><td>"CAD"</td><td>"EQXR_NSA"</td><td>-0.696517</td><td>1.0</td><td>0</td><td>0</td></tr><tr><td>2024-11-14</td><td>"EUR"</td><td>"EQXR_NSA"</td><td>2.024889</td><td>1.0</td><td>0</td><td>0</td></tr><tr><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td><td>…</td></tr><tr><td>2024-11-15</td><td>"EUR"</td><td>"EQXR_VT10"</td><td>-0.477901</td><td>1.0</td><td>0</td><td>0</td></tr><tr><td>2024-11-14</td><td>"GBP"</td><td>"EQXR_VT10"</td><td>0.664208</td><td>1.0</td><td>0</td><td>0</td></tr><tr><td>2024-11-15</td><td>"GBP"</td><td>"EQXR_VT10"</td><td>-0.068778</td><td>1.0</td><td>0</td><td>0</td></tr><tr><td>2024-11-14</td><td>"USD"</td><td>"EQXR_VT10"</td><td>-0.549983</td><td>1.0</td><td>0</td><td>0</td></tr><tr><td>2024-11-15</td><td>"USD"</td><td>"EQXR_VT10"</td><td>-1.198544</td><td>1.0</td><td>0</td><td>0</td></tr></tbody></table></div>"
|
||||||
|
],
|
||||||
|
"text/plain": [
|
||||||
|
"shape: (20, 7)\n",
|
||||||
|
"┌────────────┬─────┬───────────┬───────────┬─────────┬─────────┬─────────┐\n",
|
||||||
|
"│ real_date ┆ cid ┆ xcat ┆ value ┆ grading ┆ eop_lag ┆ mop_lag │\n",
|
||||||
|
"│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │\n",
|
||||||
|
"│ date ┆ str ┆ str ┆ f64 ┆ f64 ┆ i64 ┆ i64 │\n",
|
||||||
|
"╞════════════╪═════╪═══════════╪═══════════╪═════════╪═════════╪═════════╡\n",
|
||||||
|
"│ 2024-11-14 ┆ AUD ┆ EQXR_NSA ┆ 0.329188 ┆ 1.0 ┆ 0 ┆ 0 │\n",
|
||||||
|
"│ 2024-11-15 ┆ AUD ┆ EQXR_NSA ┆ 0.826346 ┆ 1.0 ┆ 0 ┆ 0 │\n",
|
||||||
|
"│ 2024-11-14 ┆ CAD ┆ EQXR_NSA ┆ 0.199402 ┆ 1.0 ┆ 0 ┆ 0 │\n",
|
||||||
|
"│ 2024-11-15 ┆ CAD ┆ EQXR_NSA ┆ -0.696517 ┆ 1.0 ┆ 0 ┆ 0 │\n",
|
||||||
|
"│ 2024-11-14 ┆ EUR ┆ EQXR_NSA ┆ 2.024889 ┆ 1.0 ┆ 0 ┆ 0 │\n",
|
||||||
|
"│ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … │\n",
|
||||||
|
"│ 2024-11-15 ┆ EUR ┆ EQXR_VT10 ┆ -0.477901 ┆ 1.0 ┆ 0 ┆ 0 │\n",
|
||||||
|
"│ 2024-11-14 ┆ GBP ┆ EQXR_VT10 ┆ 0.664208 ┆ 1.0 ┆ 0 ┆ 0 │\n",
|
||||||
|
"│ 2024-11-15 ┆ GBP ┆ EQXR_VT10 ┆ -0.068778 ┆ 1.0 ┆ 0 ┆ 0 │\n",
|
||||||
|
"│ 2024-11-14 ┆ USD ┆ EQXR_VT10 ┆ -0.549983 ┆ 1.0 ┆ 0 ┆ 0 │\n",
|
||||||
|
"│ 2024-11-15 ┆ USD ┆ EQXR_VT10 ┆ -1.198544 ┆ 1.0 ┆ 0 ┆ 0 │\n",
|
||||||
|
"└────────────┴─────┴───────────┴───────────┴─────────┴─────────┴─────────┘"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 8,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"eq_df = msyrs.qdf.reduce_dataframe(\n",
|
||||||
|
" df=big_df,\n",
|
||||||
|
" cids=sel_cids,\n",
|
||||||
|
" xcats=[\"EQXR_NSA\", \"EQXR_VT10\"],\n",
|
||||||
|
" start=start,\n",
|
||||||
|
")\n",
|
||||||
|
"eq_df"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 9,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"fx_xcats = [xc for xc in xcats if xc.startswith(\"FX\")]\n",
|
||||||
|
"fx_df = msyrs.qdf.reduce_dataframe(\n",
|
||||||
|
" df=big_df, cids=sel_cids, start=start, xcats=fx_xcats, intersect=True\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 10,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/html": [
|
||||||
|
"<div><style>\n",
|
||||||
|
".dataframe > thead > tr,\n",
|
||||||
|
".dataframe > tbody > tr {\n",
|
||||||
|
" text-align: right;\n",
|
||||||
|
" white-space: pre-wrap;\n",
|
||||||
|
"}\n",
|
||||||
|
"</style>\n",
|
||||||
|
"<small>shape: (10, 7)</small><table border=\"1\" class=\"dataframe\"><thead><tr><th>real_date</th><th>cid</th><th>xcat</th><th>value</th><th>grading</th><th>eop_lag</th><th>mop_lag</th></tr><tr><td>date</td><td>str</td><td>str</td><td>f64</td><td>f64</td><td>i64</td><td>i64</td></tr></thead><tbody><tr><td>2024-11-14</td><td>"AUD"</td><td>"EQXR_NSA"</td><td>0.329188</td><td>1.0</td><td>0</td><td>0</td></tr><tr><td>2024-11-15</td><td>"AUD"</td><td>"EQXR_NSA"</td><td>0.826346</td><td>1.0</td><td>0</td><td>0</td></tr><tr><td>2024-11-14</td><td>"CAD"</td><td>"EQXR_NSA"</td><td>0.199402</td><td>1.0</td><td>0</td><td>0</td></tr><tr><td>2024-11-15</td><td>"CAD"</td><td>"EQXR_NSA"</td><td>-0.696517</td><td>1.0</td><td>0</td><td>0</td></tr><tr><td>2024-11-14</td><td>"EUR"</td><td>"EQXR_NSA"</td><td>2.024889</td><td>1.0</td><td>0</td><td>0</td></tr><tr><td>2024-11-15</td><td>"EUR"</td><td>"EQXR_NSA"</td><td>-0.661567</td><td>1.0</td><td>0</td><td>0</td></tr><tr><td>2024-11-14</td><td>"GBP"</td><td>"EQXR_NSA"</td><td>0.596533</td><td>1.0</td><td>0</td><td>0</td></tr><tr><td>2024-11-15</td><td>"GBP"</td><td>"EQXR_NSA"</td><td>-0.06177</td><td>1.0</td><td>0</td><td>0</td></tr><tr><td>2024-11-14</td><td>"USD"</td><td>"EQXR_NSA"</td><td>-0.627493</td><td>1.0</td><td>0</td><td>0</td></tr><tr><td>2024-11-15</td><td>"USD"</td><td>"EQXR_NSA"</td><td>-1.367457</td><td>1.0</td><td>0</td><td>0</td></tr></tbody></table></div>"
|
||||||
|
],
|
||||||
|
"text/plain": [
|
||||||
|
"shape: (10, 7)\n",
|
||||||
|
"┌────────────┬─────┬──────────┬───────────┬─────────┬─────────┬─────────┐\n",
|
||||||
|
"│ real_date ┆ cid ┆ xcat ┆ value ┆ grading ┆ eop_lag ┆ mop_lag │\n",
|
||||||
|
"│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │\n",
|
||||||
|
"│ date ┆ str ┆ str ┆ f64 ┆ f64 ┆ i64 ┆ i64 │\n",
|
||||||
|
"╞════════════╪═════╪══════════╪═══════════╪═════════╪═════════╪═════════╡\n",
|
||||||
|
"│ 2024-11-14 ┆ AUD ┆ EQXR_NSA ┆ 0.329188 ┆ 1.0 ┆ 0 ┆ 0 │\n",
|
||||||
|
"│ 2024-11-15 ┆ AUD ┆ EQXR_NSA ┆ 0.826346 ┆ 1.0 ┆ 0 ┆ 0 │\n",
|
||||||
|
"│ 2024-11-14 ┆ CAD ┆ EQXR_NSA ┆ 0.199402 ┆ 1.0 ┆ 0 ┆ 0 │\n",
|
||||||
|
"│ 2024-11-15 ┆ CAD ┆ EQXR_NSA ┆ -0.696517 ┆ 1.0 ┆ 0 ┆ 0 │\n",
|
||||||
|
"│ 2024-11-14 ┆ EUR ┆ EQXR_NSA ┆ 2.024889 ┆ 1.0 ┆ 0 ┆ 0 │\n",
|
||||||
|
"│ 2024-11-15 ┆ EUR ┆ EQXR_NSA ┆ -0.661567 ┆ 1.0 ┆ 0 ┆ 0 │\n",
|
||||||
|
"│ 2024-11-14 ┆ GBP ┆ EQXR_NSA ┆ 0.596533 ┆ 1.0 ┆ 0 ┆ 0 │\n",
|
||||||
|
"│ 2024-11-15 ┆ GBP ┆ EQXR_NSA ┆ -0.06177 ┆ 1.0 ┆ 0 ┆ 0 │\n",
|
||||||
|
"│ 2024-11-14 ┆ USD ┆ EQXR_NSA ┆ -0.627493 ┆ 1.0 ┆ 0 ┆ 0 │\n",
|
||||||
|
"│ 2024-11-15 ┆ USD ┆ EQXR_NSA ┆ -1.367457 ┆ 1.0 ┆ 0 ┆ 0 │\n",
|
||||||
|
"└────────────┴─────┴──────────┴───────────┴─────────┴─────────┴─────────┘"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 10,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"new_df: pl.DataFrame = msyrs.qdf.update_dataframe(df=eq_df, df_add=fx_df)\n",
|
||||||
|
"\n",
|
||||||
|
"new_df.head(10)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 11,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/html": [
|
||||||
|
"<div><style>\n",
|
||||||
|
".dataframe > thead > tr,\n",
|
||||||
|
".dataframe > tbody > tr {\n",
|
||||||
|
" text-align: right;\n",
|
||||||
|
" white-space: pre-wrap;\n",
|
||||||
|
"}\n",
|
||||||
|
"</style>\n",
|
||||||
|
"<small>shape: (10, 7)</small><table border=\"1\" class=\"dataframe\"><thead><tr><th>real_date</th><th>cid</th><th>xcat</th><th>value</th><th>grading</th><th>eop_lag</th><th>mop_lag</th></tr><tr><td>date</td><td>str</td><td>str</td><td>f64</td><td>f64</td><td>i64</td><td>i64</td></tr></thead><tbody><tr><td>2024-11-14</td><td>"GBP"</td><td>"FXXR_NSA"</td><td>-0.067809</td><td>1.0</td><td>0</td><td>0</td></tr><tr><td>2024-11-15</td><td>"GBP"</td><td>"FXXR_NSA"</td><td>-0.430055</td><td>1.0</td><td>0</td><td>0</td></tr><tr><td>2024-11-14</td><td>"AUD"</td><td>"FXXR_VT10"</td><td>-0.4294</td><td>1.0</td><td>0</td><td>0</td></tr><tr><td>2024-11-15</td><td>"AUD"</td><td>"FXXR_VT10"</td><td>-0.452535</td><td>1.0</td><td>0</td><td>0</td></tr><tr><td>2024-11-14</td><td>"CAD"</td><td>"FXXR_VT10"</td><td>-1.132314</td><td>1.0</td><td>0</td><td>0</td></tr><tr><td>2024-11-15</td><td>"CAD"</td><td>"FXXR_VT10"</td><td>-1.755605</td><td>1.0</td><td>0</td><td>0</td></tr><tr><td>2024-11-14</td><td>"EUR"</td><td>"FXXR_VT10"</td><td>-0.292422</td><td>1.0</td><td>0</td><td>0</td></tr><tr><td>2024-11-15</td><td>"EUR"</td><td>"FXXR_VT10"</td><td>-0.855108</td><td>1.0</td><td>0</td><td>0</td></tr><tr><td>2024-11-14</td><td>"GBP"</td><td>"FXXR_VT10"</td><td>-0.110526</td><td>1.0</td><td>0</td><td>0</td></tr><tr><td>2024-11-15</td><td>"GBP"</td><td>"FXXR_VT10"</td><td>-0.700977</td><td>1.0</td><td>0</td><td>0</td></tr></tbody></table></div>"
|
||||||
|
],
|
||||||
|
"text/plain": [
|
||||||
|
"shape: (10, 7)\n",
|
||||||
|
"┌────────────┬─────┬───────────┬───────────┬─────────┬─────────┬─────────┐\n",
|
||||||
|
"│ real_date ┆ cid ┆ xcat ┆ value ┆ grading ┆ eop_lag ┆ mop_lag │\n",
|
||||||
|
"│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │\n",
|
||||||
|
"│ date ┆ str ┆ str ┆ f64 ┆ f64 ┆ i64 ┆ i64 │\n",
|
||||||
|
"╞════════════╪═════╪═══════════╪═══════════╪═════════╪═════════╪═════════╡\n",
|
||||||
|
"│ 2024-11-14 ┆ GBP ┆ FXXR_NSA ┆ -0.067809 ┆ 1.0 ┆ 0 ┆ 0 │\n",
|
||||||
|
"│ 2024-11-15 ┆ GBP ┆ FXXR_NSA ┆ -0.430055 ┆ 1.0 ┆ 0 ┆ 0 │\n",
|
||||||
|
"│ 2024-11-14 ┆ AUD ┆ FXXR_VT10 ┆ -0.4294 ┆ 1.0 ┆ 0 ┆ 0 │\n",
|
||||||
|
"│ 2024-11-15 ┆ AUD ┆ FXXR_VT10 ┆ -0.452535 ┆ 1.0 ┆ 0 ┆ 0 │\n",
|
||||||
|
"│ 2024-11-14 ┆ CAD ┆ FXXR_VT10 ┆ -1.132314 ┆ 1.0 ┆ 0 ┆ 0 │\n",
|
||||||
|
"│ 2024-11-15 ┆ CAD ┆ FXXR_VT10 ┆ -1.755605 ┆ 1.0 ┆ 0 ┆ 0 │\n",
|
||||||
|
"│ 2024-11-14 ┆ EUR ┆ FXXR_VT10 ┆ -0.292422 ┆ 1.0 ┆ 0 ┆ 0 │\n",
|
||||||
|
"│ 2024-11-15 ┆ EUR ┆ FXXR_VT10 ┆ -0.855108 ┆ 1.0 ┆ 0 ┆ 0 │\n",
|
||||||
|
"│ 2024-11-14 ┆ GBP ┆ FXXR_VT10 ┆ -0.110526 ┆ 1.0 ┆ 0 ┆ 0 │\n",
|
||||||
|
"│ 2024-11-15 ┆ GBP ┆ FXXR_VT10 ┆ -0.700977 ┆ 1.0 ┆ 0 ┆ 0 │\n",
|
||||||
|
"└────────────┴─────┴───────────┴───────────┴─────────┴─────────┴─────────┘"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 11,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"new_df.tail(10)"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": ".venv",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.12.7"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 2
|
||||||
|
}
|
@ -1,5 +1,32 @@
|
|||||||
{
|
{
|
||||||
"cells": [
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "31d0d7e3",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Running this noteboook\n",
|
||||||
|
"\n",
|
||||||
|
"Create a new Python Venv using:\n",
|
||||||
|
"\n",
|
||||||
|
"```bash\n",
|
||||||
|
"python -m venv .venv\n",
|
||||||
|
"# source .venv/bin/activate\n",
|
||||||
|
"./.venv/Scripts/activate\n",
|
||||||
|
"```\n",
|
||||||
|
"\n",
|
||||||
|
"Install `evcxr_jupyter` and `jupyterlab` using:\n",
|
||||||
|
"\n",
|
||||||
|
"```bash\n",
|
||||||
|
"cargo install evcxr_jupyter\n",
|
||||||
|
"evcxr_jupyter --install\n",
|
||||||
|
"pip install jupyterlab\n",
|
||||||
|
"jupyter lab\n",
|
||||||
|
"```\n",
|
||||||
|
"\n",
|
||||||
|
"Or try following this guide here: [DataCrayon - Setup Jupyter with Rust](https://datacrayon.com/data-analysis-with-rust-notebooks/setup-anaconda-jupyter-and-rust/)"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "8d04a212-4025-41d7-809e-864649b08ab5",
|
"id": "8d04a212-4025-41d7-809e-864649b08ab5",
|
||||||
@ -21,7 +48,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 3,
|
"execution_count": null,
|
||||||
"id": "22e1ae9e-14b8-4be4-b852-8f0fb420eaca",
|
"id": "22e1ae9e-14b8-4be4-b852-8f0fb420eaca",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
@ -399,7 +426,7 @@
|
|||||||
"mimetype": "text/rust",
|
"mimetype": "text/rust",
|
||||||
"name": "rust",
|
"name": "rust",
|
||||||
"pygment_lexer": "rust",
|
"pygment_lexer": "rust",
|
||||||
"version": ""
|
"version": "3.12.7"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
44
notebooks/test.py
Normal file
44
notebooks/test.py
Normal file
@ -0,0 +1,44 @@
|
|||||||
|
import msyrs
|
||||||
|
import datetime
|
||||||
|
|
||||||
|
# "E:\Work\jpmaqs-data\data\ADPEMPL_SA_P1M1ML1\USD_ADPEMPL_SA_P1M1ML1.csv"
|
||||||
|
|
||||||
|
DATA_FOLDER_PATH = "E:/Work/jpmaqs-data"
|
||||||
|
|
||||||
|
dfpath = f"{DATA_FOLDER_PATH}/data/ADPEMPL_SA_P1M1ML1/USD_ADPEMPL_SA_P1M1ML1.csv"
|
||||||
|
|
||||||
|
print(msyrs.qdf.load_qdf(dfpath))
|
||||||
|
|
||||||
|
cids_dm = "AUD.CAD.CHF.EUR.GBP.JPY.NOK.NZD.SEK.USD".split(".")
|
||||||
|
cids_em = "CLP.COP.CZK.HUF.IDR.ILS.INR.KRW.MXN.PLN.THB.TRY.TWD.ZAR".split(".")
|
||||||
|
cids = cids_dm + cids_em
|
||||||
|
cids_dux = list(set(cids) - set(["IDR", "NZD"]))
|
||||||
|
ecos = "CPIC_SA_P1M1ML12.CPIC_SJA_P3M3ML3AR.CPIC_SJA_P6M6ML6AR.CPIH_SA_P1M1ML12.CPIH_SJA_P3M3ML3AR.CPIH_SJA_P6M6ML6AR.INFTEFF_NSA.INTRGDP_NSA_P1M1ML12_3MMA.INTRGDPv5Y_NSA_P1M1ML12_3MMA.PCREDITGDP_SJA_D1M1ML12.RGDP_SA_P1Q1QL4_20QMA.RYLDIRS02Y_NSA.RYLDIRS05Y_NSA.PCREDITBN_SJA_P1M1ML12".split(
|
||||||
|
"."
|
||||||
|
)
|
||||||
|
mkts = "DU02YXR_NSA.DU05YXR_NSA.DU02YXR_VT10.DU05YXR_VT10.EQXR_NSA.EQXR_VT10.FXXR_NSA.FXXR_VT10.FXCRR_NSA.FXTARGETED_NSA.FXUNTRADABLE_NSA".split(
|
||||||
|
"."
|
||||||
|
)
|
||||||
|
xcats = ecos + mkts
|
||||||
|
|
||||||
|
tickers = [f"{c}_{x}" for c in cids for x in xcats]
|
||||||
|
|
||||||
|
|
||||||
|
# load_qdf_from_download_bank
|
||||||
|
|
||||||
|
df = msyrs.qdf.load_qdf_from_download_bank(
|
||||||
|
folder_path=DATA_FOLDER_PATH, tickers=tickers
|
||||||
|
)
|
||||||
|
print(df)
|
||||||
|
|
||||||
|
start_date = (datetime.datetime.now() - datetime.timedelta(days=5)).strftime("%Y-%m-%d")
|
||||||
|
|
||||||
|
sel_cids = ["AUD", "USD", "GBP", "CAD", "JPY", "EUR"]
|
||||||
|
df_eq = msyrs.qdf.reduce_dataframe(
|
||||||
|
df=df, cids=["AUD"], xcats=["EQXR_NSA"], start=start_date
|
||||||
|
)
|
||||||
|
print(df_eq)
|
||||||
|
|
||||||
|
fx_xcats = [xc for xc in xcats if xc.startswith("FX")]
|
||||||
|
df_fx = msyrs.qdf.reduce_dataframe(df=df, xcats=fx_xcats, intersect=True)
|
||||||
|
print(df_fx)
|
7
pyproject.toml
Normal file
7
pyproject.toml
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
[build-system]
|
||||||
|
requires = ["maturin>=1.0,<2.0"]
|
||||||
|
build-backend = "maturin"
|
||||||
|
|
||||||
|
[tool.maturin]
|
||||||
|
# "extension-module" tells pyo3 we want to build an extension module (skips linking against libpython.so)
|
||||||
|
features = ["pyo3/extension-module"]
|
32
src/lib.rs
32
src/lib.rs
@ -1,30 +1,14 @@
|
|||||||
#![doc = include_str!("../README.md")]
|
#![doc = include_str!("../README.md")]
|
||||||
|
|
||||||
|
/// Documentation for the `msyrs` Python API.
|
||||||
|
pub mod py;
|
||||||
|
|
||||||
|
/// Documentation for the Rust API.
|
||||||
|
|
||||||
|
|
||||||
|
/// Documentation for the `download` module.
|
||||||
pub mod download;
|
pub mod download;
|
||||||
pub mod utils;
|
pub mod utils;
|
||||||
|
|
||||||
use pyo3::{prelude::*, wrap_pymodule};
|
|
||||||
use pyo3_polars::PyDataFrame;
|
|
||||||
|
|
||||||
#[pyfunction]
|
pub use py::msyrs;
|
||||||
pub fn load_qdf(file_path: &str) -> PyResult<PyDataFrame> {
|
|
||||||
Ok(PyDataFrame(
|
|
||||||
utils::qdf::load_quantamental_dataframe(file_path).unwrap(),
|
|
||||||
))
|
|
||||||
}
|
|
||||||
|
|
||||||
// ignore deprecated warning
|
|
||||||
#[allow(deprecated)]
|
|
||||||
#[pymodule]
|
|
||||||
pub fn qdf(_py: Python, m: &PyModule) -> PyResult<()> {
|
|
||||||
m.add_function(wrap_pyfunction!(load_qdf, m)?)?;
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
#[allow(deprecated)]
|
|
||||||
#[pymodule]
|
|
||||||
pub fn msyrs(_py: Python, m: &PyModule) -> PyResult<()> {
|
|
||||||
// add qdf as a submodule
|
|
||||||
m.add_wrapped(wrap_pymodule!(qdf))?;
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
12
src/py/mod.rs
Normal file
12
src/py/mod.rs
Normal file
@ -0,0 +1,12 @@
|
|||||||
|
|
||||||
|
/// Python API for [`crate::utils::qdf`].
|
||||||
|
pub mod qdf;
|
||||||
|
use pyo3::{prelude::*, wrap_pymodule};
|
||||||
|
// use pyo3_polars::PyDataFrame;
|
||||||
|
|
||||||
|
#[allow(deprecated)]
|
||||||
|
#[pymodule]
|
||||||
|
pub fn msyrs(_py: Python, m: &PyModule) -> PyResult<()> {
|
||||||
|
m.add_wrapped(wrap_pymodule!(qdf::qdf))?;
|
||||||
|
Ok(())
|
||||||
|
}
|
78
src/py/qdf.rs
Normal file
78
src/py/qdf.rs
Normal file
@ -0,0 +1,78 @@
|
|||||||
|
use pyo3::prelude::*;
|
||||||
|
use pyo3_polars::PyDataFrame;
|
||||||
|
|
||||||
|
/// Python wrapper for [`crate::utils::qdf`] module.
|
||||||
|
#[allow(deprecated)]
|
||||||
|
#[pymodule]
|
||||||
|
pub fn qdf(_py: Python, m: &PyModule) -> PyResult<()> {
|
||||||
|
m.add_function(wrap_pyfunction!(load_qdf, m)?)?;
|
||||||
|
m.add_function(wrap_pyfunction!(load_qdf_from_download_bank, m)?)?;
|
||||||
|
m.add_function(wrap_pyfunction!(reduce_dataframe, m)?)?;
|
||||||
|
m.add_function(wrap_pyfunction!(update_dataframe, m)?)?;
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Python wrapper for loading a Quantamental DataFrame from a CSV file.
|
||||||
|
/// See [`crate::utils::qdf::load_quantamental_dataframe`] for full documentation.
|
||||||
|
#[pyfunction]
|
||||||
|
pub fn load_qdf(file_path: String) -> PyResult<PyDataFrame> {
|
||||||
|
Ok(PyDataFrame(
|
||||||
|
crate::utils::qdf::load_quantamental_dataframe(file_path).unwrap(),
|
||||||
|
))
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Python wrapper for loading a Quantamental DataFrame from a download bank.
|
||||||
|
/// See [`crate::utils::qdf::load::load_qdf_from_download_bank`] for full documentation.
|
||||||
|
#[pyfunction]
|
||||||
|
pub fn load_qdf_from_download_bank(
|
||||||
|
folder_path: String,
|
||||||
|
cids: Option<Vec<String>>,
|
||||||
|
xcats: Option<Vec<String>>,
|
||||||
|
tickers: Option<Vec<String>>,
|
||||||
|
) -> PyResult<PyDataFrame> {
|
||||||
|
Ok(PyDataFrame(
|
||||||
|
crate::utils::qdf::load::load_qdf_from_download_bank(folder_path, cids, xcats, tickers)
|
||||||
|
.unwrap(),
|
||||||
|
))
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Python wrapper for reduce_dataframe
|
||||||
|
/// See [`crate::utils::qdf::reduce_df::reduce_dataframe`] for full documentation.
|
||||||
|
#[pyfunction]
|
||||||
|
pub fn reduce_dataframe(
|
||||||
|
df: PyDataFrame,
|
||||||
|
cids: Option<Vec<String>>,
|
||||||
|
xcats: Option<Vec<String>>,
|
||||||
|
metrics: Option<Vec<String>>,
|
||||||
|
start: Option<String>,
|
||||||
|
end: Option<String>,
|
||||||
|
intersect: Option<bool>,
|
||||||
|
) -> PyResult<PyDataFrame> {
|
||||||
|
Ok(PyDataFrame(
|
||||||
|
crate::utils::qdf::reduce_df::reduce_dataframe(
|
||||||
|
df.into(),
|
||||||
|
cids,
|
||||||
|
xcats,
|
||||||
|
metrics,
|
||||||
|
start,
|
||||||
|
end,
|
||||||
|
intersect.unwrap_or(false),
|
||||||
|
)
|
||||||
|
.unwrap(),
|
||||||
|
))
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Python wrapper for update_dataframe
|
||||||
|
/// See [`crate::utils::qdf::update_df::update_dataframe`] for full documentation.
|
||||||
|
#[pyfunction]
|
||||||
|
pub fn update_dataframe(
|
||||||
|
df: PyDataFrame,
|
||||||
|
df_add: PyDataFrame,
|
||||||
|
xcat_replace: Option<bool>,
|
||||||
|
) -> PyResult<PyDataFrame> {
|
||||||
|
let xcat_replace = xcat_replace.unwrap_or(false);
|
||||||
|
Ok(PyDataFrame(
|
||||||
|
crate::utils::qdf::update_df::update_dataframe(&df.into(), &df_add.into(), xcat_replace)
|
||||||
|
.unwrap(),
|
||||||
|
))
|
||||||
|
}
|
@ -23,10 +23,10 @@ fn _file_base_name(file_path: String) -> String {
|
|||||||
/// The CSV must be named in the format `cid_xcat.csv` (`ticker.csv`).
|
/// The CSV must be named in the format `cid_xcat.csv` (`ticker.csv`).
|
||||||
/// The DataFrame must have a `real_date` column along with additional value columns.
|
/// The DataFrame must have a `real_date` column along with additional value columns.
|
||||||
pub fn load_quantamental_dataframe(
|
pub fn load_quantamental_dataframe(
|
||||||
file_path: &str,
|
file_path: String,
|
||||||
) -> Result<DataFrame, Box<dyn std::error::Error>> {
|
) -> Result<DataFrame, Box<dyn std::error::Error>> {
|
||||||
// get the file base name
|
// get the file base name
|
||||||
let base_file_name = _file_base_name(file_path.into());
|
let base_file_name = _file_base_name(file_path.clone().into());
|
||||||
|
|
||||||
// if filename does not have _ then it is not a Quantamental DataFrame
|
// if filename does not have _ then it is not a Quantamental DataFrame
|
||||||
if !base_file_name.contains('_') {
|
if !base_file_name.contains('_') {
|
||||||
@ -37,7 +37,7 @@ pub fn load_quantamental_dataframe(
|
|||||||
let (cid, xcat) = split_ticker(ticker.to_string())?;
|
let (cid, xcat) = split_ticker(ticker.to_string())?;
|
||||||
|
|
||||||
let mut df = CsvReadOptions::default()
|
let mut df = CsvReadOptions::default()
|
||||||
.try_into_reader_with_file_path(Some(file_path.into()))
|
.try_into_reader_with_file_path(Some(file_path.to_string().into()))
|
||||||
.unwrap()
|
.unwrap()
|
||||||
.finish()
|
.finish()
|
||||||
.unwrap();
|
.unwrap();
|
||||||
@ -99,7 +99,7 @@ fn collect_paths_recursively<P: AsRef<std::path::Path>>(path: P) -> std::io::Res
|
|||||||
}
|
}
|
||||||
|
|
||||||
fn _load_qdf_thread_safe(file_path: &str) -> Result<DataFrame, Box<dyn Error + Send + Sync>> {
|
fn _load_qdf_thread_safe(file_path: &str) -> Result<DataFrame, Box<dyn Error + Send + Sync>> {
|
||||||
let res = load_quantamental_dataframe(file_path);
|
let res = load_quantamental_dataframe(file_path.to_string());
|
||||||
res.map_err(|e| {
|
res.map_err(|e| {
|
||||||
anyhow::Error::msg(e.to_string())
|
anyhow::Error::msg(e.to_string())
|
||||||
.context("Failed to load quantamental dataframe")
|
.context("Failed to load quantamental dataframe")
|
||||||
@ -107,10 +107,10 @@ fn _load_qdf_thread_safe(file_path: &str) -> Result<DataFrame, Box<dyn Error + S
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
pub fn load_qdf_from_download_bank(
|
pub fn load_qdf_from_download_bank(
|
||||||
folder_path: &str,
|
folder_path: String,
|
||||||
cids: Option<Vec<&str>>,
|
cids: Option<Vec<String>>,
|
||||||
xcats: Option<Vec<&str>>,
|
xcats: Option<Vec<String>>,
|
||||||
tickers: Option<Vec<&str>>,
|
tickers: Option<Vec<String>>,
|
||||||
) -> Result<DataFrame, Box<dyn std::error::Error>> {
|
) -> Result<DataFrame, Box<dyn std::error::Error>> {
|
||||||
let rcids = cids.unwrap_or_else(|| Vec::new());
|
let rcids = cids.unwrap_or_else(|| Vec::new());
|
||||||
let rxcats = xcats.unwrap_or_else(|| Vec::new());
|
let rxcats = xcats.unwrap_or_else(|| Vec::new());
|
||||||
@ -145,9 +145,9 @@ pub fn load_qdf_from_download_bank(
|
|||||||
let load_files = rel_files
|
let load_files = rel_files
|
||||||
.iter()
|
.iter()
|
||||||
.filter(|(_, cid, xcat)| {
|
.filter(|(_, cid, xcat)| {
|
||||||
let f1 = rcids.len() > 0 && rcids.contains(&cid.as_str());
|
let f1 = rcids.len() > 0 && rcids.contains(&cid);
|
||||||
let f2 = rxcats.len() > 0 && rxcats.contains(&xcat.as_str());
|
let f2 = rxcats.len() > 0 && rxcats.contains(&xcat);
|
||||||
let f3 = rtickers.len() > 0 && rtickers.contains(&create_ticker(cid, xcat).as_str());
|
let f3 = rtickers.len() > 0 && rtickers.contains(&create_ticker(cid, xcat));
|
||||||
f1 | f2 | f3
|
f1 | f2 | f3
|
||||||
})
|
})
|
||||||
.map(|(file, _, _)| *file)
|
.map(|(file, _, _)| *file)
|
||||||
@ -160,7 +160,7 @@ pub fn load_qdf_from_download_bank(
|
|||||||
return Err("No files to load".into());
|
return Err("No files to load".into());
|
||||||
}
|
}
|
||||||
if load_files.len() == 1 {
|
if load_files.len() == 1 {
|
||||||
let dfx = load_quantamental_dataframe(load_files[0]).unwrap();
|
let dfx = load_quantamental_dataframe(load_files[0].to_string()).unwrap();
|
||||||
return Ok(dfx);
|
return Ok(dfx);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -17,11 +17,11 @@ const QDF_INDEX_COLUMNS: [&str; 3] = ["real_date", "cid", "xcat"];
|
|||||||
/// If no filters are provided, the original DataFrame is returned.
|
/// If no filters are provided, the original DataFrame is returned.
|
||||||
pub fn reduce_dataframe(
|
pub fn reduce_dataframe(
|
||||||
df: DataFrame,
|
df: DataFrame,
|
||||||
cids: Option<Vec<&str>>,
|
cids: Option<Vec<String>>,
|
||||||
xcats: Option<Vec<&str>>,
|
xcats: Option<Vec<String>>,
|
||||||
metrics: Option<Vec<String>>,
|
metrics: Option<Vec<String>>,
|
||||||
start: Option<&str>,
|
start: Option<String>,
|
||||||
end: Option<&str>,
|
end: Option<String>,
|
||||||
intersect: bool,
|
intersect: bool,
|
||||||
) -> Result<DataFrame, Box<dyn Error>> {
|
) -> Result<DataFrame, Box<dyn Error>> {
|
||||||
check_quantamental_dataframe(&df)?;
|
check_quantamental_dataframe(&df)?;
|
||||||
@ -36,10 +36,10 @@ pub fn reduce_dataframe(
|
|||||||
let u_xcats: Vec<String> = get_unique_xcats(&new_df)?;
|
let u_xcats: Vec<String> = get_unique_xcats(&new_df)?;
|
||||||
let u_tickers: Vec<String> = _get_unique_strs_from_str_column_object(&ticker_col)?;
|
let u_tickers: Vec<String> = _get_unique_strs_from_str_column_object(&ticker_col)?;
|
||||||
|
|
||||||
let specified_cids: Vec<&str> =
|
let cids_vec = cids.unwrap_or_else(|| u_cids.clone());
|
||||||
cids.unwrap_or_else(|| u_cids.iter().map(AsRef::as_ref).collect());
|
let specified_cids: Vec<&str> = cids_vec.iter().map(AsRef::as_ref).collect();
|
||||||
let specified_xcats: Vec<&str> =
|
let xcats_vec = xcats.unwrap_or_else(|| u_xcats.clone());
|
||||||
xcats.unwrap_or_else(|| u_xcats.iter().map(AsRef::as_ref).collect());
|
let specified_xcats: Vec<&str> = xcats_vec.iter().map(AsRef::as_ref).collect();
|
||||||
|
|
||||||
let non_idx_cols: Vec<String> = new_df
|
let non_idx_cols: Vec<String> = new_df
|
||||||
.get_column_names()
|
.get_column_names()
|
||||||
@ -107,7 +107,7 @@ pub fn reduce_dataframe(
|
|||||||
// Apply date filtering if `start` or `end` is provided
|
// Apply date filtering if `start` or `end` is provided
|
||||||
|
|
||||||
if let Some(start) = start {
|
if let Some(start) = start {
|
||||||
let start_date = chrono::NaiveDate::parse_from_str(start, "%Y-%m-%d")?;
|
let start_date = chrono::NaiveDate::parse_from_str(&start, "%Y-%m-%d")?;
|
||||||
new_df = new_df
|
new_df = new_df
|
||||||
.lazy()
|
.lazy()
|
||||||
.filter(
|
.filter(
|
||||||
@ -120,7 +120,7 @@ pub fn reduce_dataframe(
|
|||||||
}
|
}
|
||||||
|
|
||||||
if let Some(end) = end {
|
if let Some(end) = end {
|
||||||
let end_date = chrono::NaiveDate::parse_from_str(end, "%Y-%m-%d")?;
|
let end_date = chrono::NaiveDate::parse_from_str(&end, "%Y-%m-%d")?;
|
||||||
new_df = new_df
|
new_df = new_df
|
||||||
.lazy()
|
.lazy()
|
||||||
.filter(
|
.filter(
|
||||||
|
@ -11,7 +11,7 @@ const QDF_INDEX_COLUMNS: [&str; 3] = ["real_date", "cid", "xcat"];
|
|||||||
pub fn update_dataframe(
|
pub fn update_dataframe(
|
||||||
df: &DataFrame,
|
df: &DataFrame,
|
||||||
df_add: &DataFrame,
|
df_add: &DataFrame,
|
||||||
// xcat_replace: Option<&str>,
|
xcat_replace: bool,
|
||||||
) -> Result<DataFrame, Box<dyn Error>> {
|
) -> Result<DataFrame, Box<dyn Error>> {
|
||||||
check_quantamental_dataframe(df)?;
|
check_quantamental_dataframe(df)?;
|
||||||
check_quantamental_dataframe(df_add)?;
|
check_quantamental_dataframe(df_add)?;
|
||||||
@ -20,7 +20,10 @@ pub fn update_dataframe(
|
|||||||
} else if df_add.is_empty() {
|
} else if df_add.is_empty() {
|
||||||
return Ok(df.clone());
|
return Ok(df.clone());
|
||||||
};
|
};
|
||||||
|
println!(
|
||||||
|
"xcat_replace not implemented yet (passed value: {})",
|
||||||
|
xcat_replace
|
||||||
|
);
|
||||||
// vstack and drop duplicates keeping last
|
// vstack and drop duplicates keeping last
|
||||||
let mut new_df = df.vstack(df_add)?;
|
let mut new_df = df.vstack(df_add)?;
|
||||||
// help?
|
// help?
|
||||||
|
Loading…
x
Reference in New Issue
Block a user