From 973fb076010d7cfde58e69e204fcb41ca1a012ec Mon Sep 17 00:00:00 2001
From: Palash Tyagi <23239946+Magnus167@users.noreply.github.com>
Date: Wed, 9 Apr 2025 00:22:01 +0100
Subject: [PATCH] updating notebook
---
notebooks/funcwise/linear_composites.ipynb | 489 +++++++++++++++++++++
1 file changed, 489 insertions(+)
create mode 100644 notebooks/funcwise/linear_composites.ipynb
diff --git a/notebooks/funcwise/linear_composites.ipynb b/notebooks/funcwise/linear_composites.ipynb
new file mode 100644
index 0000000..86feb2f
--- /dev/null
+++ b/notebooks/funcwise/linear_composites.ipynb
@@ -0,0 +1,489 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Import Python packages\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\u001b[2mUsing Python 3.12.4 environment at: E:\\Work\\ruzt\\msyrs\\.venv\u001b[0m\n",
+ "\u001b[2mResolved \u001b[1m34 packages\u001b[0m \u001b[2min 121ms\u001b[0m\u001b[0m\n",
+ " \u001b[36m\u001b[1mBuilding\u001b[0m\u001b[39m msyrs\u001b[2m @ file:///E:/Work/ruzt/msyrs\u001b[0m\n",
+ " \u001b[32m\u001b[1mBuilt\u001b[0m\u001b[39m msyrs\u001b[2m @ file:///E:/Work/ruzt/msyrs\u001b[0m\n",
+ "\u001b[2mPrepared \u001b[1m1 package\u001b[0m \u001b[2min 14.72s\u001b[0m\u001b[0m\n",
+ "\u001b[2mUninstalled \u001b[1m1 package\u001b[0m \u001b[2min 4ms\u001b[0m\u001b[0m\n",
+ "\u001b[1m\u001b[33mwarning\u001b[39m\u001b[0m\u001b[1m:\u001b[0m \u001b[1mFailed to hardlink files; falling back to full copy. This may lead to degraded performance.\n",
+ " If the cache and target directories are on different filesystems, hardlinking may not be supported.\n",
+ " If this is intentional, set `export UV_LINK_MODE=copy` or use `--link-mode=copy` to suppress this warning.\u001b[0m\n",
+ "\u001b[2mInstalled \u001b[1m1 package\u001b[0m \u001b[2min 30ms\u001b[0m\u001b[0m\n",
+ " \u001b[33m~\u001b[39m \u001b[1mmsyrs\u001b[0m\u001b[2m==0.0.1 (from file:///E:/Work/ruzt/msyrs)\u001b[0m\n"
+ ]
+ }
+ ],
+ "source": [
+ "! uv pip install E:\\Work\\ruzt\\msyrs --upgrade"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import macrosynergy\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "import polars as pl\n",
+ "import os\n",
+ "\n",
+ "from macrosynergy.panel import view_timelines\n",
+ "from macrosynergy.management.types import QuantamentalDataFrame\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Import Python bindings - `msyrs`\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import msyrs"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "DATA_FOLDER_PATH = \"E:/Work/jpmaqs-data\"\n",
+ "# DATA_FOLDER_PATH = \"C:/Users/PalashTyagi/Code/go-dataquery/jpmaqs-data\"\n",
+ "DQ_CLIENT_ID = os.getenv(\"DQ_CLIENT_ID\")\n",
+ "DQ_CLIENT_SECRET = os.getenv(\"DQ_CLIENT_SECRET\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import time\n",
+ "\n",
+ "nb_start_time = time.time()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Time taken to load qdf: 0.004000425338745117\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "
shape: (5, 7)real_date | cid | xcat | value | grading | eop_lag | mop_lag |
---|
date | str | str | f64 | f64 | i64 | i64 |
2010-03-03 | "USD" | "ADPEMPL_SA_P1M1ML1" | -0.173806 | 3.0 | 3 | 33 |
2010-03-04 | "USD" | "ADPEMPL_SA_P1M1ML1" | -0.173806 | 3.0 | 4 | 34 |
2010-03-05 | "USD" | "ADPEMPL_SA_P1M1ML1" | -0.173806 | 3.0 | 5 | 35 |
2010-03-08 | "USD" | "ADPEMPL_SA_P1M1ML1" | -0.173806 | 3.0 | 8 | 38 |
2010-03-09 | "USD" | "ADPEMPL_SA_P1M1ML1" | -0.173806 | 3.0 | 9 | 39 |
"
+ ],
+ "text/plain": [
+ "shape: (5, 7)\n",
+ "┌────────────┬─────┬────────────────────┬───────────┬─────────┬─────────┬─────────┐\n",
+ "│ real_date ┆ cid ┆ xcat ┆ value ┆ grading ┆ eop_lag ┆ mop_lag │\n",
+ "│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │\n",
+ "│ date ┆ str ┆ str ┆ f64 ┆ f64 ┆ i64 ┆ i64 │\n",
+ "╞════════════╪═════╪════════════════════╪═══════════╪═════════╪═════════╪═════════╡\n",
+ "│ 2010-03-03 ┆ USD ┆ ADPEMPL_SA_P1M1ML1 ┆ -0.173806 ┆ 3.0 ┆ 3 ┆ 33 │\n",
+ "│ 2010-03-04 ┆ USD ┆ ADPEMPL_SA_P1M1ML1 ┆ -0.173806 ┆ 3.0 ┆ 4 ┆ 34 │\n",
+ "│ 2010-03-05 ┆ USD ┆ ADPEMPL_SA_P1M1ML1 ┆ -0.173806 ┆ 3.0 ┆ 5 ┆ 35 │\n",
+ "│ 2010-03-08 ┆ USD ┆ ADPEMPL_SA_P1M1ML1 ┆ -0.173806 ┆ 3.0 ┆ 8 ┆ 38 │\n",
+ "│ 2010-03-09 ┆ USD ┆ ADPEMPL_SA_P1M1ML1 ┆ -0.173806 ┆ 3.0 ┆ 9 ┆ 39 │\n",
+ "└────────────┴─────┴────────────────────┴───────────┴─────────┴─────────┴─────────┘"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "dfpath = f\"{DATA_FOLDER_PATH}/data/ADPEMPL_SA_P1M1ML1/USD_ADPEMPL_SA_P1M1ML1.csv\"\n",
+ "\n",
+ "starttime = time.time()\n",
+ "ldf: pl.DataFrame = msyrs.qdf.load_qdf(dfpath)\n",
+ "print(f\"Time taken to load qdf: {time.time() - starttime}\")\n",
+ "ldf.head(5)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "cids_dm = \"AUD.CAD.CHF.EUR.GBP.JPY.NOK.NZD.SEK.USD\".split(\".\")\n",
+ "cids_em = \"CLP.COP.CZK.HUF.IDR.ILS.INR.KRW.MXN.PLN.THB.TRY.TWD.ZAR\".split(\".\")\n",
+ "cids = cids_dm + cids_em\n",
+ "cids_dux = list(set(cids) - set([\"IDR\", \"NZD\"]))\n",
+ "ecos = \"CPIC_SA_P1M1ML12.CPIC_SJA_P3M3ML3AR.CPIC_SJA_P6M6ML6AR.CPIH_SA_P1M1ML12.CPIH_SJA_P3M3ML3AR.CPIH_SJA_P6M6ML6AR.INFTEFF_NSA.INTRGDP_NSA_P1M1ML12_3MMA.INTRGDPv5Y_NSA_P1M1ML12_3MMA.PCREDITGDP_SJA_D1M1ML12.RGDP_SA_P1Q1QL4_20QMA.RYLDIRS02Y_NSA.RYLDIRS05Y_NSA.PCREDITBN_SJA_P1M1ML12\".split(\n",
+ " \".\"\n",
+ ")\n",
+ "\n",
+ "\n",
+ "mkts = \"DU02YXR_NSA.DU05YXR_NSA.DU02YXR_VT10.DU05YXR_VT10.EQXR_NSA.EQXR_VT10.FXXR_NSA.FXXR_VT10.FXCRR_NSA.FXTARGETED_NSA.FXUNTRADABLE_NSA\".split(\n",
+ " \".\"\n",
+ ")\n",
+ "xcats = ecos + mkts\n",
+ "\n",
+ "tickers = [f\"{c}_{x}\" for c in cids for x in xcats]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Time taken to load qdf batch: 1.3058679103851318\n"
+ ]
+ }
+ ],
+ "source": [
+ "starttime = time.time()\n",
+ "\n",
+ "big_df: pl.DataFrame = msyrs.qdf.load_qdf_from_download_bank(\n",
+ " folder_path=DATA_FOLDER_PATH,\n",
+ " xcats=xcats,\n",
+ ")\n",
+ "print(f\"Time taken to load qdf batch: {time.time() - starttime}\")\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "286.69339656829834"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "big_df.estimated_size(\"mb\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sel_cids = [\"USD\", \"EUR\", \"GBP\", \"AUD\", \"CAD\"]\n",
+ "start = \"1990-01-01\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Time taken to reduce qdf: 0.9705278873443604\n"
+ ]
+ }
+ ],
+ "source": [
+ "fx_xcats = [xc for xc in xcats if xc.startswith(\"FX\")]\n",
+ "eq_xcats = [xc for xc in xcats if xc.startswith(\"EQ\")]\n",
+ "starttime = time.time()\n",
+ "\n",
+ "eq_df = msyrs.qdf.reduce_dataframe(\n",
+ " df=big_df,\n",
+ " cids=sel_cids,\n",
+ " xcats=fx_xcats + eq_xcats,\n",
+ " start=start,\n",
+ ")\n",
+ "\n",
+ "fx_df = msyrs.qdf.reduce_dataframe(\n",
+ " df=big_df, cids=sel_cids, start=start, xcats=fx_xcats, intersect=True\n",
+ ")\n",
+ "new_df: pl.DataFrame = msyrs.qdf.update_dataframe(df=eq_df, df_add=fx_df)\n",
+ "\n",
+ "print(f\"Time taken to reduce qdf: {time.time() - starttime}\")\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Time taken: 2.3365907669067383 seconds\n"
+ ]
+ }
+ ],
+ "source": [
+ "end_time = time.time()\n",
+ "print(f\"Time taken: {end_time - nb_start_time} seconds\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "e:\\Work\\ruzt\\msyrs\\.venv\\Lib\\site-packages\\macrosynergy\\panel\\linear_composite.py:437: UserWarning: USD does not have complete xcat data for ['FXXR_NSA']. These will be filled with NaNs for the calculation.\n",
+ " warnings.warn(wrn_msg.format(cidx=cidx, missing_xcats=missing_xcats))\n"
+ ]
+ }
+ ],
+ "source": [
+ "_cids = [\"USD\", \"CAD\"]\n",
+ "mx = macrosynergy.panel.linear_composite(\n",
+ " df=new_df.to_pandas(),\n",
+ " xcats=[\"EQXR_NSA\", \"FXXR_NSA\"], \n",
+ " cids=_cids,\n",
+ " weights=None,\n",
+ " signs=None,\n",
+ " normalize_weights=False,\n",
+ " start=None,\n",
+ " end=None,\n",
+ " blacklist=None,\n",
+ " complete_xcats=False,\n",
+ " complete_cids=False,\n",
+ " new_xcat=\"COMPOSITE\",\n",
+ " new_cid=\"GLB\",\n",
+ ")\n",
+ "# view_timelines(QuantamentalDataFrame(mx), cids=_cids)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "_cids = [\"USD\", \"CAD\"]\n",
+ "x = msyrs.panel.linear_composite(\n",
+ " df=new_df,\n",
+ " xcats=[\"EQXR_NSA\", \"FXXR_NSA\"],\n",
+ " cids=_cids,\n",
+ " weights=None,\n",
+ " signs=None,\n",
+ " weight_xcats=None,\n",
+ " normalize_weights=False,\n",
+ " start=None,\n",
+ " end=None,\n",
+ " blacklist=None,\n",
+ " complete_xcats=False,\n",
+ " complete_cids=False,\n",
+ " new_xcat=\"COMPOSITE\",\n",
+ " new_cid=\"GLB\",\n",
+ ")\n",
+ "# view_timelines(QuantamentalDataFrame(x.to_pandas()), cids=_cids)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "True"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "mwide = QuantamentalDataFrame(mx).to_wide().sort_index()\n",
+ "rwide = QuantamentalDataFrame(x.to_pandas()).to_wide().sort_index()\n",
+ "np.allclose((mwide - rwide).sum(axis=1), 0)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "e:\\Work\\ruzt\\msyrs\\.venv\\Lib\\site-packages\\macrosynergy\\panel\\linear_composite.py:437: UserWarning: USD does not have complete xcat data for ['FXXR_NSA']. These will be filled with NaNs for the calculation.\n",
+ " warnings.warn(wrn_msg.format(cidx=cidx, missing_xcats=missing_xcats))\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "True"
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "_cids = [\"USD\", \"CAD\", \"EUR\", \"AUD\"]\n",
+ "_xcats = [\"EQXR_NSA\", \"FXXR_NSA\"]\n",
+ "\n",
+ "mx = macrosynergy.panel.linear_composite(\n",
+ " df=new_df.to_pandas(),\n",
+ " xcats=_xcats,\n",
+ " cids=_cids,\n",
+ " weights=[1, 9],\n",
+ " normalize_weights=False,\n",
+ " new_xcat=\"COMPOSITE\",\n",
+ " new_cid=\"GLB\",\n",
+ ")\n",
+ "x = msyrs.panel.linear_composite(\n",
+ " df=new_df,\n",
+ " xcats=_xcats,\n",
+ " cids=_cids,\n",
+ " weights=[1, 9],\n",
+ " normalize_weights=False,\n",
+ " new_xcat=\"COMPOSITE\",\n",
+ " new_cid=\"GLB\",\n",
+ ")\n",
+ "mwide = QuantamentalDataFrame(mx).to_wide().sort_index()\n",
+ "rwide = QuantamentalDataFrame(x.to_pandas()).to_wide().sort_index()\n",
+ "np.allclose((mwide - rwide).sum(axis=1), 0)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " real_date | \n",
+ " value | \n",
+ " cid | \n",
+ " xcat | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "Empty DataFrame\n",
+ "Columns: [real_date, value, cid, xcat]\n",
+ "Index: []"
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "\n",
+ "x = msyrs.panel.linear_composite(\n",
+ " df=new_df,\n",
+ " xcats=_xcats,\n",
+ " cids=_cids,\n",
+ " weights=[1, 9],\n",
+ " normalize_weights=True,\n",
+ " new_xcat=\"COMPOSITE\",\n",
+ " new_cid=\"GLB\",\n",
+ ")\n",
+ "x.to_pandas().dropna(how=\"any\")"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": ".venv",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.12.4"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}