mirror of
https://github.com/Magnus167/msyrs.git
synced 2025-08-20 13:00:01 +00:00
wip, testing is_quantamental_dataframe
This commit is contained in:
parent
fee5ae4de8
commit
03b94fa462
72
src/main.rs
72
src/main.rs
@ -1,5 +1,5 @@
|
||||
use msyrs::download::jpmaqsdownload::{JPMaQSDownload, JPMaQSDownloadGetIndicatorArgs};
|
||||
|
||||
use msyrs::utils::dftools::is_quantamental_dataframe;
|
||||
fn main() {
|
||||
println!("Authentication to DataQuery API");
|
||||
let mut jpamqs_download = JPMaQSDownload::default();
|
||||
@ -8,7 +8,7 @@ fn main() {
|
||||
jpamqs_download.check_connection().unwrap();
|
||||
|
||||
println!("Retrieving catalogue of tickers");
|
||||
let mut start = std::time::Instant::now();
|
||||
let start = std::time::Instant::now();
|
||||
let tickers = jpamqs_download.get_catalogue().unwrap();
|
||||
println!(
|
||||
"Retrieved catalogue with {} tickers in {:?}",
|
||||
@ -25,40 +25,46 @@ fn main() {
|
||||
// let mut df_deets = Vec::new();
|
||||
|
||||
println!("Retrieving indicators for {} tickers", sel_tickers.len());
|
||||
start = std::time::Instant::now();
|
||||
let all_metrics: Vec<String> = ["value", "grading", "eop_lag", "mop_lag"]
|
||||
.iter()
|
||||
.map(|x| x.to_string())
|
||||
.collect();
|
||||
let res = jpamqs_download.save_indicators_as_csv(
|
||||
JPMaQSDownloadGetIndicatorArgs {
|
||||
// start = std::time::Instant::now();
|
||||
// let all_metrics: Vec<String> = ["value", "grading", "eop_lag", "mop_lag"]
|
||||
// .iter()
|
||||
// .map(|x| x.to_string())
|
||||
// .collect();
|
||||
// let res = jpamqs_download.save_indicators_as_csv(
|
||||
// JPMaQSDownloadGetIndicatorArgs {
|
||||
// tickers: sel_tickers.clone(),
|
||||
// metrics: all_metrics,
|
||||
// ..Default::default()
|
||||
// },
|
||||
// "./data/",
|
||||
// );
|
||||
|
||||
// match res {
|
||||
// Ok(_) => println!(
|
||||
// "Saved indicators for {} tickers in {:?}",
|
||||
// sel_tickers.len(),
|
||||
// start.elapsed()
|
||||
// ),
|
||||
// Err(e) => println!("Error saving indicators: {:?}", e),
|
||||
// }
|
||||
|
||||
let res_df = jpamqs_download
|
||||
.get_indicators_qdf(JPMaQSDownloadGetIndicatorArgs {
|
||||
tickers: sel_tickers.clone(),
|
||||
metrics: all_metrics,
|
||||
start_date: "2024-11-05".to_string(),
|
||||
..Default::default()
|
||||
},
|
||||
"./data/",
|
||||
})
|
||||
.unwrap();
|
||||
|
||||
println!(
|
||||
"Retrieved indicators for {} tickers in {:?}",
|
||||
sel_tickers.len(),
|
||||
start.elapsed()
|
||||
);
|
||||
|
||||
match res {
|
||||
Ok(_) => println!(
|
||||
"Saved indicators for {} tickers in {:?}",
|
||||
sel_tickers.len(),
|
||||
start.elapsed()
|
||||
),
|
||||
Err(e) => println!("Error saving indicators: {:?}", e),
|
||||
if !is_quantamental_dataframe(&res_df) {
|
||||
println!("DataFrame is not a quantamental DataFrame");
|
||||
} else {
|
||||
println!("DataFrame is a quantamental DataFrame");
|
||||
}
|
||||
|
||||
// let mut res_df: DataFrame = jpamqs_download
|
||||
// .get_indicators_qdf(JPMaQSDownloadGetIndicatorArgs {
|
||||
// tickers: sel_tickers.clone(),
|
||||
// start_date: "2024-11-05".to_string(),
|
||||
// ..Default::default()
|
||||
// })
|
||||
// .unwrap();
|
||||
|
||||
// println!(
|
||||
// "Retrieved indicators for {} tickers in {:?}",
|
||||
// sel_tickers.len(),
|
||||
// start.elapsed()
|
||||
// );
|
||||
}
|
||||
|
@ -3,16 +3,49 @@ use polars::prelude::*;
|
||||
const QDF_IDX_COLUMNS: [&str; 3] = ["real_date", "cid", "xcat"];
|
||||
|
||||
/// Check if a DataFrame is a quantamental DataFrame.
|
||||
fn is_quantamental_dataframe(df: &DataFrame) -> bool {
|
||||
pub fn is_quantamental_dataframe(df: &DataFrame) -> bool {
|
||||
let columns = df
|
||||
.get_column_names()
|
||||
.iter()
|
||||
.map(|s| s.as_str())
|
||||
.collect::<Vec<&str>>();
|
||||
let has_idx_columns = QDF_IDX_COLUMNS.iter().all(|col| columns.contains(col));
|
||||
if !has_idx_columns {
|
||||
return false;
|
||||
}
|
||||
let real_date_col = df.select(["real_date"]);
|
||||
match real_date_col {
|
||||
Ok(_) => {}
|
||||
Err(_) => return false,
|
||||
};
|
||||
|
||||
// check if real_date is date-type
|
||||
let real_date = df.column("real_date").unwrap();
|
||||
let is_date_dtype = real_date_col
|
||||
.unwrap()
|
||||
.dtypes()
|
||||
.iter()
|
||||
.all(|dtype| dtype == &DataType::Date);
|
||||
|
||||
has_idx_columns
|
||||
if !is_date_dtype {
|
||||
return false;
|
||||
}
|
||||
|
||||
let cid_col = df.select(["cid"]);
|
||||
match cid_col {
|
||||
Ok(_) => {}
|
||||
Err(_) => return false,
|
||||
};
|
||||
|
||||
let xcat_col = df.select(["xcat"]);
|
||||
match xcat_col {
|
||||
Ok(_) => {}
|
||||
Err(_) => return false,
|
||||
};
|
||||
|
||||
// has atleast 1 more column
|
||||
let has_other_columns = columns.len() > 3;
|
||||
if !has_other_columns {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user